Free boundary regularity for surfaces minimizing

Author:
Edith A. Cook

Journal:
Trans. Amer. Math. Soc. **290** (1985), 503-526

MSC:
Primary 49F22

DOI:
https://doi.org/10.1090/S0002-9947-1985-0792809-6

MathSciNet review:
792809

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In , fix a hyperplane and -dimensional surface lying to one side of with boundary in . We prove the existence of and minimizing among all -dimensional having boundary , where is a free boundary constrained to lie in . We prove that except possibly on a set of Hausdorff dimension , is locally a manifold with boundary for . If , is replaced by real analytic.

**[1]**R. A. Adams,*Sobolev spaces*, Academic Press, New York, 1975. MR**0450957 (56:9247)****[2]**S. Agmon, A. Douglis and L. Nirenberg,*Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions*. I, Comm. Pure Appl. Math.**12**(1959), 623-727. MR**0125307 (23:A2610)****[3]**-,*Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions*. II, Comm. Pure Appl. Math.**17**(1964), 35-92. MR**0162050 (28:5252)****[4]**W. K. Allard,*On the first variation of a varifold*, Ann. of Math. (2)**95**(1972), 417-491. MR**0307015 (46:6136)****[5]**-,*On the first variation of a varifold*:*boundary behavior*, Ann. of Math. (2)**101**(1975), 418-446. MR**0397520 (53:1379)****[6]**F. J. Almgren, Jr.,*Existence and regularity almost everywhere of solutions to elliptic variational problems with constraints*, Mem. Amer. Math. Soc.**4**(1976), No. 165. MR**0420406 (54:8420)****[7]**H. Federer,*The singular sets of area minimizing rectifiable currents with codimension one and of area minimizing flat chains modulo two with arbitrary codimension*, Bull. Amer. Math. Soc.**76**(1970), 767-771. MR**0260981 (41:5601)****[8]**-,*Geometric measure theory*, Springer-Verlag, New York, 1969. MR**0257325 (41:1976)****[9]**S. Hildebrant and J. C. C. Nitsche,*Optimal boundary regularity for minimal surfaces with a free boundary*, Manuscripta Math.**33**(1981), Fasc . MR**612618 (82i:49040)****[10]**D. Kinderlehrer, L. Nirenberg and J. Spruck,*Regularity in elliptic free boundary problems*. I, J. Analyse Math.**34**(1978), 86-119. MR**531272 (83d:35060)****[11]**C. B. Morrey, Jr.,*Second order elliptic systems of differential equations*, Ann. of Math. Studies, no. 33, Princeton Univ. Press, Princeton, N. J., 1954, pp. 101-159. MR**0068091 (16:827e)****[12]**-,*Multiple integrals in the calculus of variations*, Springer-Verlag, New York, 1966.**[13]**J. Serrin,*On the strong maximum principle for quasilinear second order differential inequalities*, J. Funct. Anal.**5**(1970), 184-193. MR**0259328 (41:3966)****[14]**J. E. Taylor,*The structure of singularities in soap-bubble-like and soap-film-like minimal surfaces*, Ann. of Math. (2)**103**(1976), 489-539. MR**0428181 (55:1208a)**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
49F22

Retrieve articles in all journals with MSC: 49F22

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1985-0792809-6

Keywords:
Free boundary,
variational problem,
flat chains,
varifold,
elliptic PDE,
complementing boundary condition

Article copyright:
© Copyright 1985
American Mathematical Society