Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

A geometric approach to the linear Penrose transform


Author: I. B. Penkov
Journal: Trans. Amer. Math. Soc. 290 (1985), 555-575
MSC: Primary 32L25; Secondary 53C05
DOI: https://doi.org/10.1090/S0002-9947-1985-0792811-4
MathSciNet review: 792811
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We show that under a certain cohomological condition the theorem of Witten, Isenberg, Yasskin and Green about the inverse Penrose transform of a (non-self-dual) connection $ \nabla $ (together with Manin's description of its curvature $ {F_\nabla }$) is true in a quite general situation. We then present a (multidimensional) version of the Penrose transform of a vector bundle in the language of jets. This gives a coordinate-free interpretation of certain results of Henkin and Manin, coding a number of classical field equations in terms of obstructions to infinitesimal extension of cohomology classes.


References [Enhancements On Off] (What's this?)

  • [1] M. F. Atiyah, Geometry of Yang-Mills fields, Lezioni Fermiane, Pisa, 1979. MR 554924 (81a:81047)
  • [2] M. F. Atiyah, N. J. Hitchin, V. G. Drinfeld and Yu. I. Manin, Construction of instantons, Phys. Lett. A 65 (1978), 185-187. MR 598562 (82g:81049)
  • [3] N. P. Buchdahl, Analysis on analytic spaces and non-self-dual Yang-Mills fields, preprint, Oxford Univ. Press, New York and London, 1982. MR 776387 (86k:32030)
  • [4] -, On the relative de Rhum sequence, preprint, Oxford Univ. Press, New York and London, 1982.
  • [5] P. Deligne, Equationes differentielles à points singuliers réguliers, Lecture Notes in Math., vol. 163, Springer-Verlag, Berlin and New York, 1970. MR 0417174 (54:5232)
  • [6] M. Eastwood, R. Penrose and R. O. Wells, Jr., Cohomology and massless fields, Comm. Math. Phys. 78 (1981), 305-351. MR 603497 (83d:81052)
  • [7] H. Grauert, Ein Theorem der analytischen Garbentheorie und die Modulräume komplexer Strukturen, Inst. Hautes Études Sci. Publ. Math. 5 (1960), 233-292. MR 0121814 (22:12544)
  • [8] Ph. A. Griffiths, The extension problem in complex analysis. II, Amer. J. Math. 88 (1966), 366-446. MR 0206980 (34:6796)
  • [9] R. Hartshorne, Algebraic geometry, Graduate Texts in Math., no. 52, Springer-Verlag, Berlin and New York, 1977. MR 0463157 (57:3116)
  • [10] G. M. Henkin and Yu. I. Manin, Twistor description of classical Yang-Mills-Dirac fields, Phys. Lett. B 95 (1980), 405-408. MR 590021 (82f:81045)
  • [11] -, On the cohomology of twistor flag spaces, Compositio Math. 44 (1981), 103-111. MR 662458 (84m:32042)
  • [12] N. J. Hitchin, Monopoles and geodesics, Comm. Math. Phys. 83 (1982), 579-602. MR 649818 (84i:53071)
  • [13] -, On the construction of monopoles, Comm. Math. Phys. 89 (1983), 145-190. MR 709461 (84m:53076)
  • [14] J. Isenberg and Ph. Yasskin, Twistor description of non-self-dual Yang-Mills fields, preprint, Univ. of Maryland, 1978. MR 564452 (81g:32023)
  • [15] J. Isenberg, Ph. Yasskin and P. Green, Non-self-dual gauge fields, Phys. Lett. B 78 (1978), 462-464.
  • [16] C. R. Le Brun, Spaces of complex geodesics and related structures, Ph.D. Thesis, Oxford, 1980.
  • [17] -, The first formal neighbourhood of ambitwistor space for curved space-time, preprint, Inst. Hautes Études Sci., 1981.
  • [18] A. Douady and T. L. Verdier, Les equations de Yang-Mills, Asterisque 71-72 (1980). MR 589891 (84j:14026)
  • [19] Yu. I. Manin, Gauge fields and complex geometry, Plenum Press, New York (to appear). MR 787979 (86m:32001)
  • [20] I. B. Penkov, The Penrose transform on general Grassmannians, C. R. Acad. Bulgare Sci. 33 (1980), 1439-1442. MR 620840 (82j:14013)
  • [21] R. Penrose, Nonlinear gravitons and curved twistor theory, Gen. Relativity Gravitation 7 (1976), 31-52. MR 0439004 (55:11905)
  • [22] -, The twistor program, Rep. Math. Phys. 12 (1977), 65-76.
  • [23] D. C. Spencer, Overdetermined systems of linear partial differential equations, Bull. Amer. Math. Soc. 75 (1969), 179-239. MR 0242200 (39:3533)
  • [24] R. Ward, On self-dual gauge fields, Phys. Lett. A 61 (1977), 81-82. MR 0443823 (56:2186)
  • [25] R. O. Wells, Jr., Complex manifolds and mathematical physics, Bull. Amer. Math. Soc. (N. S.) 1 (1979), 296-336. MR 520077 (80h:32001)
  • [26] -, Hyperfunction solutions of the zero-rest-mass field equation, Comm. Math. Phys. 78 (1981), 567-600. MR 606464 (83d:81053)
  • [27] E. Witten, An interpretation of classical Yang-Mills theory, Phys. Létt. 77 B (1878), 394-402.
  • [28] S. G. Gindikin i G. M. Khenkin, Preobrazovanie Penrouza i kompleksnaya integralnaya geometriya, VINITI, Sovr. probl. mat. 17 (1981), 57-111.
  • [29] V. G. Drinfeld i Yu. I. Manin, Instantony i puchki na $ {\mathbf{C}}{\mathbb{P}^3}$, Funkts analiz i ego pril., 13 vyp. 2 (1979), 59-74.
  • [30] Yu. I. Manin, Kalibrovochnye polya i golomorfnaya geometriya, VINITI, Sovr. probl. mat. 17 (1981), 3-56.
  • [31] -, Golomorfnaya geometriya i superpolya Yanga-Millsa, VINITI, Sovr. probl. mat. 24 (1984), 3-80.
  • [32] I. B. Penkov, Lineĭnye differentsialnye operatory i kogomologii analiticheskikh prostranstv, UMN, tom 37, vyp. 4(226), (1982), 171-172.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 32L25, 53C05

Retrieve articles in all journals with MSC: 32L25, 53C05


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1985-0792811-4
Article copyright: © Copyright 1985 American Mathematical Society

American Mathematical Society