Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Subellipticity of the $ \bar \partial$-Neumann problem on nonpseudoconvex domains

Author: Lop-Hing Ho
Journal: Trans. Amer. Math. Soc. 291 (1985), 43-73
MSC: Primary 32F20; Secondary 35N15
MathSciNet review: 797045
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Following the work of Kohn, we give a sufficient condition for subellipticity of the $ \overline \partial $-Neumann problem for not necessarily pseudoconvex domains. We define a sequence of ideals of germs and show that if $ 1$ is in any of them, then there is a subelliptic estimate. In particular, we prove subellipticity under some specific conditions for $ n - 1$ forms and for the case when the Levi-form is diagonalizable. For the necessary conditions, we use another method to prove that there is no subelliptic estimate for $ q$ forms if the Levi-form has $ n - q - 1$ positive eigenvalues and $ q$ negative eigenvalues. This was proved by Derridj. Using similar techniques, we prove a necessary condition for subellipticity for some special domains. Finally, we give a remark to Catlin's theorem concerning the hypoellipticity of the $ \overline \partial $-Neumann problem in the case of nonpseudoconvex domains.

References [Enhancements On Off] (What's this?)

  • [1] David Catlin, Necessary conditions for subellipticity and hypoellipticity for the ∂-Neumann problem on pseudoconvex domains, Recent developments in several complex variables (Proc. Conf., Princeton Univ., Princeton, N. J., 1979) Ann. of Math. Stud., vol. 100, Princeton Univ. Press, Princeton, N.J., 1981, pp. 93–100. MR 627751
  • [2] David Catlin, Necessary conditions for subellipticity of the ∂-Neumann problem, Ann. of Math. (2) 117 (1983), no. 1, 147–171. MR 683805,
  • [3] M. Derridj, Inégalités a priori et estimation sous-elliptique pour ∂ dans des ouverts nonpseudoconvexes, Math. Ann. 249 (1980), no. 1, 27–48 (French). MR 575446,
  • [4] G. B. Folland and J. J. Kohn, The Neumann problem for the Cauchy-Riemann complex, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1972. Annals of Mathematics Studies, No. 75. MR 0461588
  • [5] Lars Hörmander, 𝐿² estimates and existence theorems for the ∂ operator, Acta Math. 113 (1965), 89–152. MR 0179443,
  • [6] J. J. Kohn, Harmonic integrals on strongly pseudoconvex domains, I, II, Ann. of Math. (2) 78 (1963), 112-148; ibid. 79 (1964), 450-472.
  • [7] J. J. Kohn, Subellipticity of the ∂-Neumann problem on pseudo-convex domains: sufficient conditions, Acta Math. 142 (1979), no. 1-2, 79–122. MR 512213,
  • [8] S. Post, Finite type and subelliptic estimates for the $ \overline \partial $-Neumann problem, Ph.D. Thesis, Princeton Univ., Princeton, N.J., 1983.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 32F20, 35N15

Retrieve articles in all journals with MSC: 32F20, 35N15

Additional Information

Article copyright: © Copyright 1985 American Mathematical Society

American Mathematical Society