Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Structure and dimension of global branches of solutions to multiparameter nonlinear equations

Authors: J. Ize, I. Massabò, J. Pejsachowicz and A. Vignoli
Journal: Trans. Amer. Math. Soc. 291 (1985), 383-435
MSC: Primary 58E07; Secondary 47H15
MathSciNet review: 800246
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This paper is concerned with the topological dimension of global branches of solutions appearing in different problems of Nonlinear Analysis, in particular multiparameter (including infinite dimensional) continuation and bifurcation problems. By considering an extension of the notion of essential maps defined on sets and using elementary point set topology, we are able to unify and extend, in a selfcontained fashion, most of the recent results on such problems. Our theory applies whenever any generalized degree theory with the boundary dependence property may be used, but with no need of algebraic structures. Our applications to continuation and bifurcation follow from the nontriviality of a local invariant, in the stable homotopy group of a sphere, and give information on the local dimension and behavior of the sets of solutions, of bifurcation points and of continuation points.

References [Enhancements On Off] (What's this?)

  • [AA,I] J. C. Alexander and S. S. Antman, Global and local behavior of bifurcating multidimensional continua of solutions for multiparameter nonlinear eigenvalue problems, Arch. Rational Mech. Anal. 76 (1981), 339-355. MR 628173 (82k:58030)
  • [AA,II] -, Global behavior of solutions of nonlinear equations depending on infinite-dimensional parameter, Indiana Univ. Math. J. 32 (1983), 39-62. MR 684754 (84d:58018)
  • [AF] J. C. Alexander and P. M. Fitzpatrick, The homotopy of certain spaces of nonlinear operators and its relation to global bifurcation of the fixed points of parametrized condensing operators, J. Funct. Anal. 34 (1979), 87-106. MR 551112 (81k:58023)
  • [AMP] J. C. Alexander, I. Massabó and J. Pejsachowicz, On the connectivity properties of the solution set of infinitely-parametrized families of vector fields, Boll. Un. Mat. Ital. A (6) 1 (1982), 309-312. MR 663297 (83h:58028)
  • [Bo] Yu. G. Borisovich, Topology and non-linear functional analysis, Russian Math. Surveys 34 (1979), 14-23. MR 562811 (81f:58013)
  • [Br] F. E. Browder, Degree for nonlinear mappings of monotone type, Proc. Nat. Acad. Sci. U.S.A. 50 (1983), 1771-1773. MR 699437 (84g:47046)
  • [BP] F. E. Browder and W. V. Petryshyn, Approximation methods and the generalized topological degree for nonlinear mappings in Banach spaces, J. Funct. Anal. 3 (1969), 385-414. MR 0244812 (39:6126)
  • [BZS] Yu. G. Borisovich, V. G. Zvyagin and Yu. I. Sapronov, Nonlinear Fredholm maps and the Leray-Schauder theory, Russian Math. Surveys 32 (1977), 1-54.
  • [D] J. Dugundji, Topology, Allyn & Bacon, Boston, Mass., 1966. MR 0193606 (33:1824)
  • [FMP,I] P. M. Fitzpatrick, I. Massabó and J. Pejsachowicz, On the covering dimension of the set of solutions of some nonlinear equations, Trans. Amer. Math. Soc. (to appear). MR 846606 (87k:47137)
  • [FMP,II] -, Global several-parameter bifurcation and continuation theorems: a unified approach via complementing maps, Math. Ann. 263 (1983), 61-73. MR 697331 (84k:47044b)
  • [FMV,I] M. Furi, M. Martelli and A. Vignoli, Contributions to the spectral theory for nonlinear operators in Banach spaces, Ann. Mat. Pura Appl. 118 (1978), 229-294. MR 533609 (80k:47070)
  • [FMV,II] -, On the solvability of nonlinear operator equations in normed spaces, Ann. Mat. Pura Appl. 124 (1980), 321-343. MR 591562 (83h:47047)
  • [FP] M. Furi and M. P. Pera, On the existence of an unbounded connected component of solutions for non-linear equations in Banach spaces, Rend. Accad. Naz. Lincei 57 (1979), 31-38. MR 617272 (82j:47082)
  • [G] A. Granas, The theory of compact vector fields and some applications to the topology of functional spaces, Rozprawy Mat. 30 (1962). MR 0149253 (26:6743)
  • [GG] K. Geba and A. Granas, Infinite dimensional cohomology theories, J. Math. Pures Appl. 52 (1973), 145-170. MR 0380865 (52:1762)
  • [GT] J. Grispolakis and E. D. Tymchatyn, On confluent mappings and essential mappings--a survey, Rocky Mount. J. Math. 11 (1981), 131-153. MR 612135 (82k:54055)
  • [I,I] J. Ize, Bifurcation theory for Fredholm operators, Mem. Amer. Math. Soc. No. 174 (1976). MR 0425696 (54:13649)
  • [I,II] -, Introduction to bifurcation theory, Differential Equations, Lecture Notes in Math., vol. 957, Springer-Verlag, 1982, pp. 145-203. MR 679145 (84f:58029)
  • [I,III] -, Obstruction theory and multiparameter Hopf bifurcation, Trans. Amer. Math. Soc. 289 (1985), 757-792. MR 784013 (86k:58023)
  • [K] K. Kuratowski, Topology, Vols. I and II, Academic Press, New York, 1968. MR 0217751 (36:840)
  • [LS] J. Leray and J. Schauder, Topologie et équations fonctionelles, Ann. Sci. École Norm. Sup. 51 (1934), 45-78. MR 1509338
  • [M] J. Mawhin, Equivalence theorems for nonlinear operator equations and coincidence degree theory for some mappings in locally convex topological vector space, J. Differential Equations 12 (1972), 610-636. MR 0328703 (48:7045)
  • [MP] I. Massabó and J. Pejsachowicz, On the connectivity properties of the solution set of parametrized families of compact vector fields, J. Funct. Anal. 59 (1984), 151-166. MR 766486 (86d:58007)
  • [N] R. D. Nussbaum, The fixed point index for local condensing maps, Ann. Mat. Pura Appl. 89 (1971), 217-258. MR 0312341 (47:903)
  • [P] A. R. Pears, Dimension theory of general spaces, Cambridge Univ. Press, 1975. MR 0394604 (52:15405)
  • [R] P. H. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Funct. Anal. 7 (1971), 487-513. MR 0301587 (46:745)
  • [S] B. N. Sadovskij, Limit compact and condensing operators, Russian Math. Surveys 27 (1972), 85-155. MR 0428132 (55:1161)
  • [Sp] E. H. Spanier, Algebraic topology, McGraw-Hill, New York, 1966. MR 0210112 (35:1007)
  • [W] G. T. Whyburn, Topological analysis, Princeton Univ. Press, Princeton, N. J., 1958. MR 0099642 (20:6081)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 58E07, 47H15

Retrieve articles in all journals with MSC: 58E07, 47H15

Additional Information

Keywords: Global branches of solutions, multiparameter continuation problems, multiparameter bifurcation problems, covering dimension, essential maps, cantor manifolds
Article copyright: © Copyright 1985 American Mathematical Society

American Mathematical Society