Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Saturation of the closed unbounded filter on the set of regular cardinals


Authors: Thomas J. Jech and W. Hugh Woodin
Journal: Trans. Amer. Math. Soc. 292 (1985), 345-356
MSC: Primary 03E55; Secondary 03E35
DOI: https://doi.org/10.1090/S0002-9947-1985-0805967-1
MathSciNet review: 805967
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For any $ \alpha < {\kappa ^ + }$, the following are equiconsistent:

(a) $ \kappa $ is measurable of order $ \alpha $,

(b) $ \kappa $ is $ \alpha $-Mahlo and the filter $ {\mathbf{C}}[\operatorname{Reg} ]$ is saturated.


References [Enhancements On Off] (What's this?)

  • [1] J. Baumgartner, A. Taylor and S. Wagon, On splitting stationary subsets of large cardinals, J. Symbolic Logic 42 (1976), 203-214. MR 0505505 (58:21619)
  • [2] T. Jech, Stationary subsets of inaccessible cardinals (J. Baumgartner, ed.), Proc. Summer Research Conf. in Math. Sci., Boulder, Col., 1983, Contemporary Math., vol. 31, Amer. Math. Soc., Providence, R. I., 1984, pp. 115-142. MR 763898 (86c:03044)
  • [3] K. Kunen, Some applications of iterated ultrapowers in set theory, Ann. Math. Logic 1 (1970), 179-227. MR 0277346 (43:3080)
  • [4] -, Saturated ideals, J. Symbolic Logic 43 (1978), 65-76. MR 495118 (80a:03068)
  • [5] K. Kunen and J. Paris, Boolean extensions and measurable cardinals, Ann. Math. Logic 2 (1971), 359-378. MR 0277381 (43:3114)
  • [6] W. Mitchell, Sets constructible from sequences of ultrafilters, J. Symbolic Logic 39 (1974), 57-66. MR 0344123 (49:8863)
  • [7] -, The core model for sequences of measures, Math. Proc. Cambridge Philos. Soc. (to appear).
  • [8] S. Shelah, Proper forcing, Lecture Notes in Math., vol. 940, Springer Verlag, Berlin, 1982. MR 675955 (84h:03002)
  • [9] R. Solovay, Real-valued measurable cardinals, Axiomatic Set Theory (D. Scott, ed.), Proc Sympos. Pure Math., vol. 13, Part 1, Amer. Math. Soc., Providence, R. I., 1971, pp. 397-428. MR 0290961 (45:55)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 03E55, 03E35

Retrieve articles in all journals with MSC: 03E55, 03E35


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1985-0805967-1
Article copyright: © Copyright 1985 American Mathematical Society

American Mathematical Society