A simple theory of differential calculus in locally convex spaces

Author:
Richard A. Graff

Journal:
Trans. Amer. Math. Soc. **293** (1986), 485-509

MSC:
Primary 58C20; Secondary 46A99, 46G05, 47H99

DOI:
https://doi.org/10.1090/S0002-9947-1986-0816306-5

MathSciNet review:
816306

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A theory of differential calculus for nonlinear maps between general locally convex spaces is developed. All convergence notions are topological, and only familiarity with basic results from point set topology, differential calculus in Banach spaces, and locally convex space theory is assumed. The chain rule for continuous th order differentiability, smoothness of inverse functions, and function space continuity properties of higher order derivatives are examined. It is shown that this theory extends the classical Fréchet theory of differential calculus for maps between Banach spaces.

**[1]**R. A. Graff,*Elements of non-linear functional analysis*, Mem. Amer. Math. Soc., No. 206, (1978). MR**500408 (80j:58019)****[2 -,**Differential Geom.*Flows for differentiable vector fields on conjugate Banach spaces*, J]**15**(1980), 575-593. MR**628346 (83h:58088)****[3]**-,*Smoothness of semigroups for nonlinear equations*, J. Integral Equations.**4**(1982), 183-220. MR**661169 (83i:47073)****[4]**R. A. Graff and W. M. Ruess,*Appropriate locally convex domains for differential calculus*, Proc. Amer. Math. Soc.**86**(1982), 331-335. MR**667300 (84b:58012)****[5]**A. Grothendieck,*Sur les espaces**et*, Summa Brasil. Mat.**3**(1954), 57-123. MR**0075542 (17:765b)****[6]**R. S. Hamilton,*The inverse function theorem of Nash and Moser*, Bull. Amer. Math. Soc. (N.S.)**7**(1982), 65-222. MR**656198 (83j:58014)****[7]**J. L. Kelley,*General topology*, Van Nostrand, New York, London and Toronto, 1955. MR**0070144 (16:1136c)****[8]**S. Lang,*Differential manifolds*, Addison-Wesley, Reading, Mass., 1972. MR**0431240 (55:4241)****[9]**N. E. Steenrod,*A convenient category of topological spaces*, Michigan Math. J.**14**(1967), 133-152. MR**0210075 (35:970)**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
58C20,
46A99,
46G05,
47H99

Retrieve articles in all journals with MSC: 58C20, 46A99, 46G05, 47H99

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1986-0816306-5

Article copyright:
© Copyright 1986
American Mathematical Society