A solution of Warner's 3rd problem for representations of holomorphic type

Author:
Floyd L. Williams

Journal:
Trans. Amer. Math. Soc. **293** (1986), 605-612

MSC:
Primary 22E46; Secondary 11F70, 32M15

MathSciNet review:
816313

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In response to one of ten problems posed by G. Warner, we assign (to the extent that it is possible) a geometric or cohomological interpretation-- in the sense of Langlands--to the multiplicty in of an irreducible unitary representation of a semisimple Lie group , where is a discrete subgroup of , in the case when has a highest weight.

**[1]**Hans R. Fischer and Floyd L. Williams,*Borel-LePotier diagrams—calculus of their cohomology bundles*, Tohoku Math. J. (2)**36**(1984), no. 2, 233–251. MR**742597**, 10.2748/tmj/1178228850**[2]**Phillip Griffiths and Wilfried Schmid,*Locally homogeneous complex manifolds*, Acta Math.**123**(1969), 253–302. MR**0259958****[3]**R. P. Langlands,*Dimension of spaces of automorphic forms*, Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965) Amer. Math. Soc., Providence, R.I., 1966, pp. 253–257. MR**0212135****[4]**R. Parthasarathy,*Criteria for the unitarizability of some highest weight modules*, Proc. Indian Acad. Sci. Sect. A Math. Sci.**89**(1980), no. 1, 1–24. MR**573381****[5]**Wilfried Schmid,*On a conjecture of Langlands*, Ann. of Math. (2)**93**(1971), 1–42. MR**0286942****[6]**Garth Warner,*Selberg’s trace formula for nonuniform lattices: the 𝑅-rank one case*, Studies in algebra and number theory, Adv. in Math. Suppl. Stud., vol. 6, Academic Press, New York-London, 1979, pp. 1–142. MR**535763****[7]**Floyd L. Williams,*Vanishing theorems for type (0,𝑞) cohomology of locally symmetric spaces*, Osaka J. Math.**18**(1981), no. 1, 147–160. MR**609983****[8]**-,*An alternating sum formula for the multiplicities of unitary highest weight modules in*, unpublished manuscript.**[9]**Floyd L. Williams,*Discrete series multiplicities in 𝐿²(Γ\𝐺). II. Proof of Langlands’ conjecture*, Amer. J. Math.**107**(1985), no. 2, 367–376. MR**784287**, 10.2307/2374418

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
22E46,
11F70,
32M15

Retrieve articles in all journals with MSC: 22E46, 11F70, 32M15

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1986-0816313-2

Article copyright:
© Copyright 1986
American Mathematical Society