The Stefan problem with heating: appearance and disappearance of a mushy region

Authors:
M. Bertsch, P. de Mottoni and L. A. Peletier

Journal:
Trans. Amer. Math. Soc. **293** (1986), 677-691

MSC:
Primary 35R35; Secondary 35K65

DOI:
https://doi.org/10.1090/S0002-9947-1986-0816319-3

MathSciNet review:
816319

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We consider a material which is initially in the solid state and then, due to heating, starts to melt. We describe the appearance of a so-called mushy region, i.e., a region in which the material is in neither a solid nor a liquid state. The main result is that after a finite time the mushy region has disappeared and only the solid and the liquid phases have remained.

**[1]**D. G. Aronson, M. G. Crandall and L. A. Peletier,*Stabilization of solutions of a degenerate nonlinear diffusion problem*, Nonlinear Anal.**6**(1982), 1001-1022. MR**678053 (84j:35099)****[2]**D. R. Atthey,*A finite difference scheme for melting problems*, J. Inst. Math. Appl.**13**(1974), 353-366. MR**0351295 (50:3784)****[3]**M. Bertsch, P. de Mottoni and L. A. Peletier,*Degenerate diffusion and the Stefan problem*, Nonlinear Anal.**8**(1984), 1311-1336. MR**764915 (86a:35071)****[4]**A. Friedman,*One dimensional Stefan problems with nonmonotone free boundary*, Trans. Amer. Math. Soc.**133**(1968), 89-114. MR**0227626 (37:3210)****[5]**B. H. Gilding,*Hölder continuity of solutions of parabolic equations*, J. London Math. Soc.**13**(1976), 103-106. MR**0399658 (53:3501)****[6]**A. M. Meirmanov,*The structure of generalized solution of Stefan problem. Periodic solution*, preprint. MR**722331 (86b:35074)****[7]**O. A. Oleinik,*A method of solution of the general Stefan problem*, Soviet Math. Dokl.**1**(1960), 1350-1353. MR**0125341 (23:A2644)****[8]**M. Ughi,*A melting problem with a mushy region*:*qualitative properties*, Preprint Nr. 1982-83/11, Istit. Mat. "U. Dini", Univ. of Florence. MR**767518 (86j:80009)**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
35R35,
35K65

Retrieve articles in all journals with MSC: 35R35, 35K65

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1986-0816319-3

Article copyright:
© Copyright 1986
American Mathematical Society