Unitary quasilifting: applications

Author:
Yuval Z. Flicker

Journal:
Trans. Amer. Math. Soc. **294** (1986), 553-565

MSC:
Primary 11F70; Secondary 22E55

MathSciNet review:
825721

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let be the quasi-split unitary group in three variables defined using a quadratic extension of number fields. Complete local and global results are obtained for the -endo-(unstable) lifting from to . This is used to establish quasi-(endo-)lifting for automorphic forms from to by means of base change from to . Base change quasi-lifting is also proven. Continuing the work of , the exposition is elementary, and uses only a simple form of an identity of trace formulas, and base change transfer of orbital integrals of spherical functions.

**[**A. Borel and H. Jacquet,**BJ**]*Automorphic forms and automorphic representations*, Automorphic forms, representations and 𝐿-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 189–207. With a supplement “On the notion of an automorphic representation” by R. P. Langlands. MR**546598****[**W. Casselman,**C**]*Characters and Jacquet modules*, Math. Ann.**230**(1977), no. 2, 101–105. MR**0492083****[**L. Clozel,**Cl**]*Local base change for*, lectures at IAS, 1984.**[**G. van Dijk,**D**]*Computation of certain induced characters of 𝔭-adic groups*, Math. Ann.**199**(1972), 229–240. MR**0338277****[**Yuval Z. Flicker,**U(2)**]*Stable and labile base change for 𝑈(2)*, Duke Math. J.**49**(1982), no. 3, 691–729. MR**672503****[**-,**U(3)**]*-packets and liftings for*, unpublished, Princton Univ., 1982.**[**-,**Sym**]*Twisted trace formula and symmetric square comparison*, preprint, Princeton, 1984.**[**-,**Sym**]*Symmetric square: Applications of a trace formula*, preprint, Princeton, 1984. See also:*Outer automorphisms and instability*, Théorie de Nombres, Paris, 1980-1981, Progress in Math., vol. 22, Birkhäuser, Basel, 1982, pp. 57-65.**[**Yuval Z. Flicker,**GL(n)**]*On twisted lifting*, Trans. Amer. Math. Soc.**290**(1985), no. 1, 161–178. MR**787960**, 10.1090/S0002-9947-1985-0787960-0**[**-,**I**]*Unitary quasi-lifting: preparations*, Proc. Conf. on Trace Formula in honor of A. Selberg, Bowdoin, 1984.**[**Stephen Gelbart and Ilya Piatetski-Shapiro,**GP**]*Automorphic forms and 𝐿-functions for the unitary group*, Lie group representations, II (College Park, Md., 1982/1983) Lecture Notes in Math., vol. 1041, Springer, Berlin, 1984, pp. 141–184. MR**748507**, 10.1007/BFb0073147**[**Harish-Chandra,**H**]*Admissible invariant distributions on reductive 𝑝-adic groups*, Lie theories and their applications (Proc. Ann. Sem. Canad. Math. Congr., Queen’s Univ., Kingston, Ont., 1977) Queen’s Univ., Kingston, Ont., 1978, pp. 281–347. Queen’s Papers in Pure Appl. Math., No. 48. MR**0579175****[**H. Jacquet and J. A. Shalika,**JS**]*On Euler products and the classification of automorphic forms. II*, Amer. J. Math.**103**(1981), no. 4, 777–815. MR**623137**, 10.2307/2374050**[**David Keys,**Ke**]*Principal series representations of special unitary groups over local fields*, Compositio Math.**51**(1984), no. 1, 115–130. MR**734788**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
11F70,
22E55

Retrieve articles in all journals with MSC: 11F70, 22E55

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1986-0825721-5

Article copyright:
© Copyright 1986
American Mathematical Society