Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Fixed points of topologically stable flows


Author: Mike Hurley
Journal: Trans. Amer. Math. Soc. 294 (1986), 625-633
MSC: Primary 58F25
DOI: https://doi.org/10.1090/S0002-9947-1986-0825726-4
MathSciNet review: 825726
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This paper concerns certain necessary conditions for a flow to be topologically stable (in the sense of P. Walters). In particular, it is shown that under fairly general conditions one can conclude that a topologically stable flow has a finite number of fixed points, and each of these is isolated in the chain recurrent set of the flow.


References [Enhancements On Off] (What's this?)

  • [1] R. Bowen, Periodic orbits for hyperbolic flows, Amer. J. Math. 94 (1972), 1-30. MR 0298700 (45:7749)
  • [2] -, One dimensional hyperbolic sets for flows, J. Differential Equations 12 (1972), 173-179. MR 0336762 (49:1535)
  • [3] -, Symbolic dynamics for hyperbolic flows, Amer. J. Math. 95 (1973), 429-460. MR 0339281 (49:4041)
  • [4] -, On Axiom A diffeomorphisms, C.B.M.S. Regional Conf. Ser. Math. no. 35, Amer. Math. Soc., Providence, R.I., 1978. MR 0482842 (58:2888)
  • [5] C. Conley, Isolated invariant sets and the Morse index, C.B.M.S. Regional Conf. Ser. Math., no. 38, Amer. Math. Soc., Providence, R.I., 1978. MR 511133 (80c:58009)
  • [6] -, The gradient structure of a flow, I.B.M. Res. RC 3932. Yorktown Heights, N.Y., 1972.
  • [7] P. Fleming and M. Hurley, A converse topological stability theorem for flows on surfaces, J. Differential Equations 53 (1984), 172-191. MR 748238 (87j:58056)
  • [8] J. Franks, Homology and dynamical systems, C.B.M.S. Regional Conf. Ser. Math., no. 49, Amer. Math. Soc., Providence, R.I., 1982. MR 669378 (84f:58067)
  • [9] J. Guckenheimer, A strange, strange attractor, pp. 368-381 in J. Marsden, M. McCracken and G. Oster, The Hopf Bifurcation and its Applications, Springer-Verlag, New York, 1976. MR 0494309 (58:13209)
  • [10] J. Guckenheimer and R. F. Williams, Structural stability of Lorenz attractors, Publ. Inst. Hautes Ètudes Sci. 50 (1979), 59-72. MR 556582 (82b:58055a)
  • [11] J. Hale, Ordinary differential equations, Wiley, New York, 1969. MR 0419901 (54:7918)
  • [12] M. Hurley, Attractors: persistence, and density of their basins, Trans. Amer. Math. Soc. 269 (1982), 247-271. MR 637037 (83c:58049)
  • [13] -, Consequences of topological stability, J. Differential Equations 54 (1984), 60-72. MR 756545 (85m:58105)
  • [14] -, Combined structural and topological stability are equivalent to Axiom A and the strong transversality condition, Ergodic Theory Dynamical Systems 4 (1984), 81-88. MR 758895 (86a:58050)
  • [15] K. Kato and A. Morimoto, Topological stability of Anosov flows and their centralizers, Topology 12 (1973), 255-273. MR 0326779 (48:5122)
  • [16] -, Topological $ \Omega $-stability of Axiom A flows with no $ \Omega $-explosions, J. Differential Equations 34 (1979), 464-481. MR 555322 (81c:58044)
  • [17] M. M. C. de Oliveira, $ {C^0}$ -density of structurally stable vector fields, Bull. Amer. Math. Soc. 82 (1976), 786. MR 0420716 (54:8728)
  • [18] J. Palis and W. de Melo, Geometric theory of dynamical systems, Springer-Verlag, New York, 1982. MR 669541 (84a:58004)
  • [19] C. Robinson, Stability theorems and hyperbolicity in dynamical systems, Rocky Mountain J. Math. 7 (1977), 425-437. MR 0494300 (58:13200)
  • [20] S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967), 747-817. MR 0228014 (37:3598)
  • [21] C. Sparrow, The Lorenz equations: Bifurcation, chaos, and strange attractors, Springer-Verlag, New York, 1982. MR 681294 (84b:58072)
  • [22] P. Walters, Anosov diffeomorphisms are topologically stable, Topology 9 (1970), 71-78. MR 0254862 (40:8069)
  • [23] R. F. Williams, The structure of Lorenz attractors, Turbulence Seminar, Lecture Notes in Math., vol 615, Springer-Verlag, New York, 1977, pp. 94-112. MR 0461581 (57:1566)
  • [24] -, The structure of Lorenz attractors, Publ. Inst. Hautes Ètudes Sci. 50 (1979), 73-100. MR 556583 (82b:58055b)
  • [25] E. C. Zeeman, Morse inequalities for diffeomorphisms with shoes and flows with solenoids, Dynamical Systems-Warwick 1974, Lecture Notes in Math., vol. 468, Springer-Verlag, New York, 1975, pp. 44-47.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 58F25

Retrieve articles in all journals with MSC: 58F25


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1986-0825726-4
Article copyright: © Copyright 1986 American Mathematical Society

American Mathematical Society