Functional equations for character series associated with matrices

Author:
Edward Formanek

Journal:
Trans. Amer. Math. Soc. **294** (1986), 647-663

MSC:
Primary 15A72; Secondary 16A38

MathSciNet review:
825728

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let be either the ring of invariants or the trace ring of generic matrices. Then has a character series which is a symmetric rational function of commuting variables . The main result is that if , then satisfies the functional equation

**[1]**Edward Formanek,*Invariants and the ring of generic matrices*, J. Algebra**89**(1984), no. 1, 178–223. MR**748233**, 10.1016/0021-8693(84)90240-0**[2]**Melvin Hochster and Joel L. Roberts,*Rings of invariants of reductive groups acting on regular rings are Cohen-Macaulay*, Advances in Math.**13**(1974), 115–175. MR**0347810****[3]**Gordon James and Adalbert Kerber,*The representation theory of the symmetric group*, Encyclopedia of Mathematics and its Applications, vol. 16, Addison-Wesley Publishing Co., Reading, Mass., 1981. With a foreword by P. M. Cohn; With an introduction by Gilbert de B. Robinson. MR**644144****[4]**Lieven Le Bruyn,*The functional equation for Poincaré series of trace rings of generic 2×2 matrices*, Israel J. Math.**52**(1985), no. 4, 355–360. MR**829364**, 10.1007/BF02774086**[5]**I. G. Macdonald,*Symmetric functions and Hall polynomials*, The Clarendon Press, Oxford University Press, New York, 1979. Oxford Mathematical Monographs. MR**553598****[6]**M. Pavaman Murthy,*A note on factorial rings*, Arch. Math. (Basel)**15**(1964), 418–420. MR**0173695****[7]**C. Procesi,*The invariant theory of 𝑛×𝑛 matrices*, Advances in Math.**19**(1976), no. 3, 306–381. MR**0419491****[8]**Louis Halle Rowen,*Polynomial identities in ring theory*, Pure and Applied Mathematics, vol. 84, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1980. MR**576061****[9]**T. A. Springer,*Invariant theory*, Lecture Notes in Mathematics, Vol. 585, Springer-Verlag, Berlin-New York, 1977. MR**0447428****[10]**Richard P. Stanley,*Hilbert functions of graded algebras*, Advances in Math.**28**(1978), no. 1, 57–83. MR**0485835**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
15A72,
16A38

Retrieve articles in all journals with MSC: 15A72, 16A38

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1986-0825728-8

Article copyright:
© Copyright 1986
American Mathematical Society