Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On the generalized Nakayama conjecture and the Cartan determinant problem


Authors: K. R. Fuller and B. Zimmermann-Huisgen
Journal: Trans. Amer. Math. Soc. 294 (1986), 679-691
MSC: Primary 16A35; Secondary 16A03, 16A60, 16A64
DOI: https://doi.org/10.1090/S0002-9947-1986-0825739-2
MathSciNet review: 825739
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: For Artin algebras allowing certain filtered module categories, the Generalized Nakayama Conjecture is shown to be true; our result covers all positively graded Artin algebras and those whose radical cube is zero. For the corresponding class of left artinian rings we prove that finite global dimension forces the determinant of the Cartan matrix to be 1.


References [Enhancements On Off] (What's this?)

  • [1] M. Auslander and I. Reiten, On a generalized version of the Nakayama Conjecture, Proc. Amer. Math. Soc. 52 (1975), 69-74. MR 0389977 (52:10806)
  • [2] W. D. Burgess, K. R. Fuller, E. R. Voss and B. Zimmermann-Huisgen, The Cartan matrix as an indicator of finite global dimension for artinian rings, Proc. Amer. Math. Soc. 95 (1985), 157-165. MR 801315 (87c:16026)
  • [3] V. P. Camillo and K. R. Fuller, On graded rings with finiteness conditions, Proc. Amer. Math. Soc. 86 (1982), 1-5. MR 663852 (83h:16001)
  • [4] S. Eilenberg, Algebras of cohomologically finite dimension, Comment. Math. Helv. 28 (1958), 310-319. MR 0065544 (16:442c)
  • [5] R. Gordon and E. Green, Graded Artin algebras, J. Algebra 26 (1982), 111-137. MR 659212 (83m:16028a)
  • [6] E. Green, W. Gustafson and D. Zacharia, On Artin rings of global dimension two, J. Algebra 92 (1985), 375-379. MR 778455 (86d:16025)
  • [7] K. Morita and H. Tachikawa, On $ {\text{QF}} - 3$ rings (unpublished).
  • [8] B. J. Mueller, The classification of algebras by dominant dimension, Canad. J. Math. 20 (1968), 398-409. MR 0224656 (37:255)
  • [9] H. Tachikawa, Quasi-Frobenius rings and generalizations, Lecture Notes in Math., vol. 351, Springer-Verlag, Berlin and New York, 1973. MR 0349740 (50:2233)
  • [10] G. Wilson, The Cartan map on categories of graded modules, J. Algebra 85 (1983), 390-398. MR 725091 (85h:16021)
  • [11] D. Zacharia, On the Cartan matrix of an Artin algebra of global dimension two, J. Algebra 82 (1983), 353-357. MR 704760 (84h:16020)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 16A35, 16A03, 16A60, 16A64

Retrieve articles in all journals with MSC: 16A35, 16A03, 16A60, 16A64


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1986-0825739-2
Article copyright: © Copyright 1986 American Mathematical Society

American Mathematical Society