Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Eigenvalues of elliptic boundary value problems with an indefinite weight function

Authors: Jacqueline Fleckinger and Michel L. Lapidus
Journal: Trans. Amer. Math. Soc. 295 (1986), 305-324
MSC: Primary 35P20; Secondary 35J10
MathSciNet review: 831201
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We consider general selfadjoint elliptic eigenvalue problems (P)

$\displaystyle \mathcal{A}u = \lambda r(x)u,$

in an open set $ \Omega \subset {{\mathbf{R}}^k}$. Here, the operator $ \mathcal{A}$ is positive and of order $ 2m$ and the "weight" $ r$ is a function which changes sign in $ \Omega $ and is allowed to be discontinuous. A scalar $ \lambda $ is said to be an eigenvalue of $ ({\text{P}})$ if $ \mathcal{A}u = \lambda ru$--in the variational sense--for some nonzero $ u$ satisfying the appropriate growth and boundary conditions. We determine the asymptotic behavior of the eigenvalues of $ ({\text{P}})$, under suitable assumptions. In the case when $ \Omega $ is bounded, we assumed Dirichlet or Neumann boundary conditions. When $ \Omega $ is unbounded, we work with operators of "Schrödinger type"; if we set $ r \pm = \max ( \pm r,0)$, two cases appear naturally: First, if $ \Omega $ is of "weighted finite measure" (i.e., $ \int_\Omega {{{({r_ + })}^{k/2m}} < + \infty \;} {\text{or}}\;\int_\Omega {{{({r_ - })}^{k/2m}} < + \infty } $), we obtain an extension of the well-known Weyl asymptotic formula; secondly, if $ \Omega $ is of "weighted infinite measure" (i.e., $ \int_\Omega {{{({r_ + })}^{k/2m}} = + \infty \;{\text{or}}\;\int_\Omega {{{({r_ - })}^{k/2m}} = + \infty } } $), our results extend the de Wet-Mandl formula (which is classical for Schrödinger operators with weight $ r \equiv 1$). When $ \Omega $ is bounded, we also give lower bounds for the eigenvalues of the Dirichlet problem for the Laplacian.

References [Enhancements On Off] (What's this?)

  • [Ad] R. A. Adams, Sobolev spaces, Academic Press, New York, 1975. MR 0450957 (56:9247)
  • [Ag] S. Agmon, Lectures on elliptic boundary value problems, Van Nostrand, Princeton, N. J., 1965. MR 0178246 (31:2504)
  • [Be] R. Beals, Indefinite Sturm-Liouville problems and half-range completeness, J. Differential Equations 56 (1985), 391-407. MR 780497 (86i:34032)
  • [BS 1] M. S. Birman and M. Z. Solomjak, Spectral asymptotics of nonsmooth elliptic operators. II, Trans. Moscow Math. Soc. 28 (1973), 1-32.
  • [BS 2] -, Asymptotics of the spectrum of variational problems on solutions of elliptic equations, Siberian Math. J. 20 (1979), 1-15.
  • [BS 3] -, Asymptotic behavior of the spectrum of the differential equations, J. Soviet Math. 12 (1979), 247-282.
  • [BS 4] -, Quantitative analysis in Sobolev imbedding theorems and applications to spectral theory, Amer. Math. Soc. Transl. (2) 114 (1980). MR 562305 (80m:46026)
  • [Bo] M. Bôcher, Boundary problems in one dimension, Proc. Fifth Internat. Congress Math. (Cambridge, 1912), Vol. I, Cambridge Univ. Press, New York, 1913, pp. 163-195.
  • [Br] F. E. Browder, Le problème des vibrations pour un opérateur aux dérivées partielles self-adjoint et du type elliptique à coefficients variables, C. R. Acad. Sci. Paris Sér. A 236 (1953), 2140-2142. MR 0058089 (15:320a)
  • [CH] R. Courant and D. Hilbert, Methods of mathematical physics, Vol. I; English transl., Interscience, New York, 1953. MR 0065391 (16:426a)
  • [DGHa] I. Dee Chang, G. W. Grube and E. Y. Harper, On the breakup of accelerating liquid drops, J. Fluid Mech. 52 (1972), 565-591.
  • [dF] D. G. de Figueiredo, Positive solutions of semilinear elliptic problems, Lecture Notes in Math., vol. 957, Springer-Verlag, Berlin, 1982, pp. 34-87. MR 679140 (84k:35067)
  • [Fl] J. Fleckinger, Estimate of the number of eigenvalues for an operator of Schrödinger type, Proc. Roy. Soc. Edinburgh Sect. A 89 (1981), 355-361. MR 635770 (83f:35085)
  • [FlF 1] J. Fleckinger and M. El Fetnassi, Asymptotics of eigenvalues of variational elliptic problems with indefinite weight function, Spectral Theory of Sturm-Liouville Differential Operators (Hans G. Kaper and A. Zettl, eds.), ANL-84-73, Argonne National Laboratory, Argonne, Illinois, 1984, pp. 107-118.
  • [FlF 2] -, Comportement asymptotique des valeurs propres de problèmes elliptiques "non définis à droite", C. R. Acad. Sci. Paris Sér. I Math. 299 (1984), 599-602. MR 771357 (86a:35113)
  • [FlMe] J. Fleckinger and G. Métivier, Théorie spectrale des opérateurs uniformement elliptiques sur quelques ouverts irréguliers, C. R. Acad. Sci. Paris Sér. A 276 (1973), 913-916. MR 0320550 (47:9087)
  • [Ga] L. Gårding, The asymptotic distribution of the eigenvalues and eigenfunctions of elliptic operators, Math. Scand. 1 (1953), 55-72. MR 0064980 (16:366b)
  • [GN] W. N. Gill and R. J. Nunge, Analysis of heat or mass transfer in some countercurrent flows, Internat. J. Heat Mass Transfer 8 (1965), 873-886.
  • [GoK] I. C. Gohberg and M. G. Krein, Theory and applications of Volterra operators in Hilbert spaces, Transl. Math. Monographs, vol. 24, Amer. Math. Soc., Providence, R.I., 1970. MR 0264447 (41:9041)
  • [Gu] D. Gurarie, $ {L^p}$ and spectral theory for a class of global elliptic operators on $ {{\mathbf{R}}^n}$, Preprint #84-10, Case Western Reserve Univ., Dept. of Mathematics and Statistics, 1984. MR 799355 (87a:35137)
  • [H] P. Hess, On bifurcation from infinity for positive solutions of second order elliptic eigenvalue problems, Nonlinear Phenomena in Mathematical Sciences, Academic Press, New York, 1982, pp. 537-544. MR 728015 (85c:35006)
  • [HK] P. Hess and T. Kato, On some linear and nonlinear eigenvalue problems with an indefinite weight function, Comm. Partial Differential Equations 5 (1980), 999-1030. MR 588690 (81m:35102)
  • [Hi] D. Hilbert, Grundzüge einer allgemeinen Theorie der linearen Integralgleichungen, Teubner, Leipzig, 1912; Chelsea, New York, 1953. MR 0056184 (15:37b)
  • [Ho] E. Holmgren, Über Randwertaufgaben bei einer linearen Differentialgleichung zweiter Ordnung, Ark. Mat., Astro och Fysik 1 (1904), 401-417.
  • [Kc] M. Kac, Can one hear the shape of a drum?, Amer. Math. Monthly (Slaught Memorial Papers, No. 11) (4) 73 (1966), 1-23. MR 0201237 (34:1121)
  • [KKLeZ] H. G. Kaper, M. K. Kwong, C. G. Lekkerkerker and A. Zettl, Full- and half-range eigenfunctions expansions for Sturm-Liouville problems with indefinite weights, Proc. Roy. Soc. Edinburgh Sect. A 98 (1984), 69-88. MR 765489 (86j:47067)
  • [KZ] H. G. Kaper and A. Zettl (eds.), Proc. May-June 1984 Workshop "Spectral Theory of Sturm-Liouville Differential Operators", ANL-84-73, Argonne National Laboratory, Argonne, Illinois, 1984.
  • [La 1] M. L. Lapidus, Valeurs propres du laplacien avec un poids qui change de signe, C. R. Acad. Sci. Paris Sér. I Math. 298 (1984), 265-268. MR 745319 (85j:35139)
  • [La 2] -, Spectral theory of elliptic problems with indefinite weights, Spectral Theory of Sturm-Liouville Differential Operators (Hans G. Kaper and A. Zettl, eds.), ANL-84-73, Argonne National Laboratory, Argonne, Illinois, 1984, pp. 159-168.
  • [LiY] P. Li and S. T. Yau, On the Schrödinger equation and the eigenvalue problem, Comm. Math. Phys. 88 (1983), 309-318. MR 701919 (84k:58225)
  • [Lb] E. Lieb, The number of bound states of one-body Schrödinger operators and the Weyl problem, Proc. Sympos. Pure Math., vol. 36, Amer. Math. Soc., Providence, R.I., 1980, pp. 241-252. MR 573436 (82i:35134)
  • [LM] J. L. Lions and E. Magenes, Non-homogeneous boundary value problems and applications, vol. I, English transl., Springer-Verlag, Berlin, 1972. MR 0350177 (50:2670)
  • [LoS] L. H. Loomis and S. Sternberg, Advanced calculus, Addison-Wesley, Reading, Mass., 1968. MR 0227327 (37:2912)
  • [LuR] G. S. S. Ludford and R. A. Robertson, Fully diffused regions, SIAM J. Appl. Math. 25 (1973), 693-703. MR 0342024 (49:6770)
  • [LuW] G. S. S. Ludford and S. S. Wilson, Subcharacteristic reversal, SIAM J. Appl. Math. 27 (1974), 430-440. MR 0359537 (50:11990)
  • [MM] A. Manes and A. M. Micheletti, Un'estensione della teoria variazionale classica degli autovalori per operatori ellittici del secondo ordine, Boll. Un. Mat. Ital. 7 (1973), 285-301. MR 0344663 (49:9402)
  • [Me] G. Métivier, Valeurs propres de problèmes aux limites elliptiques irréguliers, Bull. Soc. Math. France Mém. 51-52 (1977), 125-219. MR 0473578 (57:13244)
  • [Pe] I. N. Pesin, Classical and modern integration theories, English transl., Academic Press, New York, 1970. MR 0264015 (41:8614)
  • [Pl] Å. Pleijel, Sur la distribution des valeurs propres de problèmes régis par l'équation $ \Delta u + \lambda k(x,y)u = 0$, Ark. Mat., Astr. och Fysik 29 B (1942), 1-8.
  • [RS] M. Reed and B. Simon, Methods of modern mathematical physics, Vol. IV, Analysis of operators, Academic Press, New York, 1978. MR 0493421 (58:12429c)
  • [Ri] R. G. D. Richardson, Contributions to the study of oscillation properties of the solutions of linear differential equations of the second order, Amer. J. Math. 40 (1918), 283-316. MR 1506360
  • [Ro 1] G. V. Rozenbljum, The distribution of the discrete spectrum for singular differential operators, Soviet Math. Dokl. 13 (1972), 245-249. MR 0295148 (45:4216)
  • [Ro 2] -, Asymptotics of the eigenvalues of the Schrödinger operator, Math. USSR-Sb. 22 (1974), 349-371.
  • [Ro 3] -, Asymptotics of the eigenvalues of the Schrödinger operator, Problemy Mat. Anal. Slož. Sistem. 5 (1975), 152-166. (Russian)
  • [T] E. C. Tichmarsh, Eigenfunction expansions associated with second-order differential equations, Part II, Oxford Univ. Press, London, 1958.
  • [Wn] H. F. Weinberger, Variational methods for eigenvalue approximation, CBMS Regional Conf. Ser. Appl. Math., vol. 15, SIAM, Philadelphia, Penn., 1974. MR 0400004 (53:3842)
  • [We] H. Weyl, Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen, Math. Ann. 71 (1911), 441-469.
  • [Y] S. T. Yau, Survey on partial differential equations in differential geometry, Seminar on Differential Geometry (S. T. Yau, ed.), Ann. of Math. Studies, no. 102, Princeton Univ. Press, Princeton, N.J., 1982, pp. 3-71. MR 645729 (83i:53003)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 35P20, 35J10

Retrieve articles in all journals with MSC: 35P20, 35J10

Additional Information

Keywords: Elliptic boundary value problems, indefinite weight function, asymptotic behavior of eigenvalues, lower bounds of eigenvalues, spectral theory, variational methods, operators of Schrödinger type
Article copyright: © Copyright 1986 American Mathematical Society

American Mathematical Society