Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Definable sets in ordered structures. I


Authors: Anand Pillay and Charles Steinhorn
Journal: Trans. Amer. Math. Soc. 295 (1986), 565-592
MSC: Primary 03C45; Secondary 03C40, 03C50, 06F99
DOI: https://doi.org/10.1090/S0002-9947-1986-0833697-X
MathSciNet review: 833697
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This paper introduces and begins the study of a well-behaved class of linearly ordered structures, the $ \mathcal{O}$-minimal structures. The definition of this class and the corresponding class of theories, the strongly $ \mathcal{O}$-minimal theories, is made in analogy with the notions from stability theory of minimal structures and strongly minimal theories. Theorems 2.1 and 2.3, respectively, provide characterizations of $ \mathcal{O}$-minimal ordered groups and rings. Several other simple results are collected in $ \S3$. The primary tool in the analysis of $ \mathcal{O}$-minimal structures is a strong analogue of "forking symmetry," given by Theorem 4.2. This result states that any (parametrically) definable unary function in an $ \mathcal{O}$-minimal structure is piecewise either constant or an order-preserving or reversing bijection of intervals. The results that follow include the existence and uniqueness of prime models over sets (Theorem 5.1) and a characterization of all $ {\aleph _0}$-categorical $ \mathcal{O}$-minimal structures (Theorem 6.1).


References [Enhancements On Off] (What's this?)

  • 1. J. Baldwin, Stability theory, Perspectives in Mathematical Logic, Springer-Verlag, Berlin (to appear). MR 918762 (89k:03002)
  • [1] J. Baldwin and A. Lachlan, On strongly minimal sets, J. Symbolic Logic 36 (1971), 79-96. MR 0286642 (44:3851)
  • [2] P. Cohn, Algebra, Vol. 2, Wiley, London, 1977. MR 0530404 (58:26625)
  • [3] L. van den Dries, Remarks on Tarski's problem concerning $ (R, + , \cdot ,\exp )$, manuscript, 1983.
  • [4] P. Erdös, L. Gillman and M. Henriksen, An isomorphism theorem for real closed fields, Ann. of Math. (2) 61 (1955), 542-554. MR 0069161 (16:993e)
  • [5] S. Feferman and R. Vaught, The first order properties of algebraic systems, Fund. Math. 47 (1959), 57-103. MR 0108455 (21:7171)
  • [6] F. Gausdorff, Grundzuge der Mengenlehre, Leipzig, 1914.
  • [7] C. Langford, Some theorems on deducibility, Ann. of Math. (2) 28 (1927), 16-40. MR 1502760
  • [8] A. Macintyre, On $ {\aleph _1}$-categorical theories of fields, Fund. Math. 71 (1971), 1-25. MR 0290954 (45:48)
  • [9] A. Pillay, An introduction to stability theory, Oxford Univ. Press, Oxford, 1983. MR 719195 (85i:03104)
  • [10] A. Pillay and C. Steinhorn, Definable sets in ordered structures, Bull. Amer. Math. Soc. (N.S.) 11 (1984). MR 741730 (86c:03033)
  • [11] K-P. Podewski, Minimale ringe, preprint 1973. MR 0392962 (52:13775)
  • [12] M. Rabin, Decidable theories, Handbook of Mathematical Logic (J. Barwise ed.), North-Holland, Amsterdam, 1977. MR 0457132 (56:15351)
  • [13] J. Reineke, Minimale gruppen, Z. Math. Logik Grundlag. Math. 21 (1975), 357-359. MR 0379179 (52:85)
  • [14] A. Robinson, Complete theories, North-Holland, Amsterdam, 1956. MR 0075897 (17:817b)
  • [15] A. Tarski and J. McKinsey, A decision problem for elementary algebra and geometry, Rand Corporation, Santa Monica, 1948. MR 0024396 (9:486q)
  • [16] S. Shelah, Uniqueness and characterization of prime models over sets for totally transcendental first-order theories, J. Symbolic Logic 37 (1972), 107-113. MR 0316239 (47:4787)
  • [17] G. Sacks, Saturated model theory, Benjamin, Reading, Mass., 1972. MR 0398817 (53:2668)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 03C45, 03C40, 03C50, 06F99

Retrieve articles in all journals with MSC: 03C45, 03C40, 03C50, 06F99


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1986-0833697-X
Article copyright: © Copyright 1986 American Mathematical Society

American Mathematical Society