Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



The Fefferman metric and pseudo-Hermitian invariants

Author: John M. Lee
Journal: Trans. Amer. Math. Soc. 296 (1986), 411-429
MSC: Primary 32F25; Secondary 53B25
MathSciNet review: 837820
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: C. Fefferman has shown that a real strictly pseudoconvex hypersurface in complex $ n$-space carries a natural conformal Lorentz metric on a circle bundle over the manifold. This paper presents two intrinsic constructions of the metric, valid on an abstract $ {\text{CR}}$ manifold. One is in terms of tautologous differential forms on a natural circle bundle; the other is in terms of Webster's pseudohermitian invariants. These results are applied to compute the connection and curvature forms of the Fefferman metric explicitly.

References [Enhancements On Off] (What's this?)

  • [1] Thierry Aubin, Métriques riemanniennes et courbure, J. Differential Geometry 4 (1970), 383–424 (French). MR 0279731
  • [2] D. Burns Jr., K. Diederich, and S. Shnider, Distinguished curves in pseudoconvex boundaries, Duke Math. J. 44 (1977), no. 2, 407–431. MR 0445009
  • [3] S. S. Chern and J. K. Moser, Real hypersurfaces in complex manifolds, Acta Math. 133 (1974), 219–271. MR 0425155
  • [4] Frank A. Farris, An intrinsic construction of Fefferman’s CR metric, Pacific J. Math. 123 (1986), no. 1, 33–45. MR 834136
  • [5] Charles L. Fefferman, Monge-Ampère equations, the Bergman kernel, and geometry of pseudoconvex domains, Ann. of Math. (2) 103 (1976), no. 2, 395–416. MR 0407320
  • [6] G. B. Folland and E. M. Stein, Estimates for the ∂_{𝑏} complex and analysis on the Heisenberg group, Comm. Pure Appl. Math. 27 (1974), 429–522. MR 0367477
  • [6a] C. R. Graham, On Sparling's characterization of Fefferman metrics, preprint, 1986.
  • [7] Allan Greenleaf, The first eigenvalue of a sub-Laplacian on a pseudo-Hermitian manifold, Comm. Partial Differential Equations 10 (1985), no. 2, 191–217. MR 777049, 10.1080/03605308508820376
  • [7a] H. Jacobowitz, The canonical bundle and realizable $ CR$ hypersurfaces, preprint, 1985.
  • [8] David Jerison and John M. Lee, A subelliptic, nonlinear eigenvalue problem and scalar curvature on CR manifolds, Microlocal analysis (Boulder, Colo., 1983) Contemp. Math., vol. 27, Amer. Math. Soc., Providence, RI, 1984, pp. 57–63. MR 741039, 10.1090/conm/027/741039
  • [9] -, The Yamabe problem on $ CR$ manifolds, preprint, 1985.
  • [10] J. J. Kohn, Boundaries of complex manifolds, Proc. Conf. Complex Analysis (Minneapolis, 1964) Springer, Berlin, 1965, pp. 81–94. MR 0175149
  • [11] C. Stanton, Intrinsic connections for Levi metrics, prerint, 1983.
  • [12] S. M. Webster, Pseudo-Hermitian structures on a real hypersurface, J. Differential Geom. 13 (1978), no. 1, 25–41. MR 520599

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 32F25, 53B25

Retrieve articles in all journals with MSC: 32F25, 53B25

Additional Information

Article copyright: © Copyright 1986 American Mathematical Society