Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

A regularity theorem for minimizing hypersurfaces modulo $ \nu$


Author: Frank Morgan
Journal: Trans. Amer. Math. Soc. 297 (1986), 243-253
MSC: Primary 49F22; Secondary 53A10
DOI: https://doi.org/10.1090/S0002-9947-1986-0849477-5
MathSciNet review: 849477
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It is proved that an $ (n - 1)$-dimensional, area-minimizing flat chain modulo $ \nu $ in $ {{\mathbf{R}}^n}$, with smooth extremal boundary of at most $ \nu /2$ components, has an interior singular set of Hausdorff dimension at most $ n - 8$. Similar results hold for more general integrands.


References [Enhancements On Off] (What's this?)

  • [AS] Frederick J. Almgren, Jr. and Leon Simon, Existence of embedded solutions of Plateau's problem, Ann. Scuola Norm. Pisa 6 (1979), 447-495. MR 553794 (81d:49025)
  • [B] John Brothers, Editor, Some open problems in geometric measure theory, Proc. Sympos. Pure Math., vol. 44 (W. K. Allard and F. J. Almgren, Jr., ed.), Amer. Math. Soc., Providence, R. I., 1986, pp. 441-464. MR 840292 (87f:49055)
  • [F1] Herbert Federer, Geometric measure theory, Springer-Verlag, Heidelberg and New York, 1969. MR 0257325 (41:1976)
  • [F2] -, The singular sets of area minimizing rectifiable currents with codimension one and of area minimizing flat chains modulo two with arbitrary codimension, Bull. Amer. Math. Soc. 76 (1970), 767-771. MR 0260981 (41:5601)
  • [HS] Robert Hardt and Leon Simon, Boundary regularity and embedded solutions for the oriented Plateau problem, Ann. of Math. (2) 110 (1979), 439-486. MR 554379 (81i:49031)
  • [M1] Frank Morgan, Calibrations modulo $ \nu $, Adv. in Math.(to appear). MR 879855 (88g:49048)
  • [M2] -, Examples of unoriented area-minimizing surfaces, Trans. Amer. Math. Soc. 283 (1984), 225-237. MR 735418 (85b:49079)
  • [M3] -, Harnack-type mass bounds and Bernstein theorems for area-minimizing flat chains modulo $ \nu $, Comm. Partial Differential Equations (to appear). MR 857167 (87m:49091)
  • [M4] -, On finiteness for the number of stable minimal hypersurfaces with a fixed boundary, Bull. Amer. Math. Soc. 13 (1985), 133-136; Indiana Univ. Math. J. (to appear). MR 799795 (86j:58033)
  • [SSA] F. J. Almgren, Jr., R. Schoen, and L. Simon, Regularity and singularity estimates on hypersurfaces minimizing parametric elliptic variational integrals, Acta Math. 139 (1977), 217-265. MR 0467476 (57:7333)
  • [T] Jean E. Taylor, Regularity of the singular sets of two-dimensional area-minimizing flat chains modulo $ 3$ in $ {{\mathbf{R}}^3}$, Invent. Math. 22 (1973), 119-159. MR 0333903 (48:12225)
  • [W1] Brian White, Regularity of area-minimizing hypersurfaces at boundaries with multiplicity, Seminar on Minimal Submanifolds (Enrico Bombieri, ed.) Ann. of Math. Studies, no. 103, Princeton Univ. Press, Princeton, N. J., 1983. MR 795244 (86h:49049)
  • [W2] -, A regularity theorem for minimizing hypersurfaces modulo $ p$, Proc. Sympos. Pure Math., vol. 44 (W. K. Allard and F. J. Almgren, Jr., ed.), Amer. Math. Soc., Providence, R. I., 1986, pp. 413-427.
  • [W3] -, The structure of minimizing hypersurfaces $ \bmod 4$, Invent. Math. 53 (1979), 45-58. MR 538683 (81b:49018)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 49F22, 53A10

Retrieve articles in all journals with MSC: 49F22, 53A10


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1986-0849477-5
Keywords: Area-minimizing, flat chain modulo $ \nu $, regularity
Article copyright: © Copyright 1986 American Mathematical Society

American Mathematical Society