Chaotic functions with zero topological entropy

Author:
J. Smítal

Journal:
Trans. Amer. Math. Soc. **297** (1986), 269-282

MSC:
Primary 58F13; Secondary 54H20, 58F11

DOI:
https://doi.org/10.1090/S0002-9947-1986-0849479-9

MathSciNet review:
849479

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Recently Li and Yorke introduced the notion of chaos for mappings from the class , where is a compact real interval. In the present paper we give a characterization of the class of mappings chaotic in this sense. As is well known, contains the mappings of positive topological entropy. We show that contains also certain (but not all) mappings that have both zero topological entropy and infinite attractors. Moreover, we show that the complement of consists of maps that have only trajectories approximate by cycles. Finally, it turns out that the original Li and Yorke notion of chaos can be replaced by (an equivalent notion of) -chaos, distinguishable on a certain level .

**[1]**Louis Block,*Homoclinic points of mappings of the interval*, Proc. Amer. Math. Soc.**72**(1978), no. 3, 576–580. MR**509258**, https://doi.org/10.1090/S0002-9939-1978-0509258-X**[2]**Louis Block,*Stability of periodic orbits in the theorem of Šarkovskii*, Proc. Amer. Math. Soc.**81**(1981), no. 2, 333–336. MR**593484**, https://doi.org/10.1090/S0002-9939-1981-0593484-8**[3]**G. J. Butler and G. Pianigiani,*Periodic points and chaotic functions in the unit interval*, Bull. Austral. Math. Soc.**18**(1978), no. 2, 255–265. MR**0494303**, https://doi.org/10.1017/S0004972700008066**[4]**W. A. Coppel,*Maps of an interval*, Preprint, Univ. of Minnesota, 1983.**[5]**R. Graw,*On the connection between periodicity and chaos of continuous functions and their iterates*, Aequationes Math.**19**(1979), 277-278.**[6]**J. Harrison,*Wandering intervals*, Dynamical systems and turbulence, Warwick 1980 (Coventry, 1979/1980), Lecture Notes in Math., vol. 898, Springer, Berlin-New York, 1981, pp. 154–163. MR**654888****[7]**I. Kan,*A chaotic function possessing a scrambled set with positive Lebesgue measure*, Proc. Amer. Math. Soc.**92**(1984), no. 1, 45–49. MR**749887**, https://doi.org/10.1090/S0002-9939-1984-0749887-4**[8]**A. N. Šarkovskiĭ and H. K. Kenžegulov,*On properties of the set of limit points of an iterative sequence of a continuous function*, Volž. Mat. Sb. Vyp.**3**(1965), 343–348 (Russian). MR**0199316****[9]**L. Kuipers and H. Niederreiter,*Uniform distribution of sequences*, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1974. Pure and Applied Mathematics. MR**0419394****[10]**C. Kuratowski,*Topologie*. I, PWN, Warsaw, 1958.**[11]**T. Y. Li and James A. Yorke,*Period three implies chaos*, Amer. Math. Monthly**82**(1975), no. 10, 985–992. MR**0385028**, https://doi.org/10.2307/2318254**[12]**Michał Misiurewicz,*Horseshoes for mappings of the interval*, Bull. Acad. Polon. Sci. Sér. Sci. Math.**27**(1979), no. 2, 167–169 (English, with Russian summary). MR**542778****[13]**-,*Chaos almost everywhere*, Preprint, 1983.**[14]**O. M. Šarkovs′kiĭ,*Co-existence of cycles of a continuous mapping of the line into itself*, Ukrain. Mat. Ž.**16**(1964), 61–71 (Russian, with English summary). MR**0159905****[15]**O. M. Šarkovs′kiĭ,*On cycles and the structure of a continuous mapping*, Ukrain. Mat. Ž.**17**(1965), no. 3, 104–111 (Russian). MR**0186757****[16]**A. N. Šarkovskiĭ,*The behavior of the transformation in the neighborhood of an attracting set*, Ukrain. Mat. Ž.**18**(1966), no. 2, 60–83 (Russian). MR**0212784****[17]**-,*The partially ordered system of attracting sets*, Soviet Math. Dokl.**7**(1966), 1384-1386.**[18]**A. N. Šarkovskiĭ,*Attracting sets containing no cycles*, Ukrain. Mat. Ž.**20**(1968), no. 1, 136–142 (Russian). MR**0225314****[19]**-,*On some properties of discrete dynamical systems*, Proc. Internat. Colloq. on Iteration Theory and its Applications, Toulouse, 1982.**[20]**J. Smítal and K. Smítalová,*Erratum: “Structural stability of nonchaotic difference equations” [J. Math. Anal. Appl. 90 (1982), no. 1, 1–11; MR0680860 (84d:58046)]*, J. Math. Anal. Appl.**101**(1984), no. 1, 324. MR**746238**, https://doi.org/10.1016/0022-247X(84)90069-6**[21]**J. Smítal,*A chaotic function with some extremal properties*, Proc. Amer. Math. Soc.**87**(1983), no. 1, 54–56. MR**677230**, https://doi.org/10.1090/S0002-9939-1983-0677230-7**[22]**J. Smítal,*A chaotic function with a scrambled set of positive Lebesgue measure*, Proc. Amer. Math. Soc.**92**(1984), no. 1, 50–54. MR**749888**, https://doi.org/10.1090/S0002-9939-1984-0749888-6**[23]**K. Janková and J. Smítal,*A characterization of chaos*, Bull. Austral. Math. Soc.**34**(1986), no. 2, 283–292. MR**854575**, https://doi.org/10.1017/S0004972700010157**[24]**P. Štefan,*A theorem of Šarkovskii on the existence of periodic orbits of continuous endomorphisms of the real line*, Comm. Math. Phys.**54**(1977), no. 3, 237–248. MR**0445556****[25]**M. B. Vereĭkina and A. N. Sharkovskiĭ,*Recurrence in one-dimensional dynamical systems*, Approximate and qualitative methods of the theory of functional differential equations, Akad. Nauk Ukrain. SSR, Inst. Mat., Kiev, 1983, pp. 35–46 (Russian). MR**753681**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
58F13,
54H20,
58F11

Retrieve articles in all journals with MSC: 58F13, 54H20, 58F11

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1986-0849479-9

Article copyright:
© Copyright 1986
American Mathematical Society