Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The intersection topology w.r.t. the real line and the countable ordinals


Author: G. M. Reed
Journal: Trans. Amer. Math. Soc. 297 (1986), 509-520
MSC: Primary 54A10; Secondary 03E50, 54A35, 54D18
DOI: https://doi.org/10.1090/S0002-9947-1986-0854081-9
MathSciNet review: 854081
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: If $ {\Upsilon _1}$ and $ {\Upsilon _2}$ are topologies defined on the set $ X$, then the intersection topology w.r.t. $ {\Upsilon _1}$ and $ {\Upsilon _2}$ is the topology $ \Upsilon $ on $ X$ such that $ \{ {U_1} \cap {U_2}\vert{U_1} \in {\Upsilon _1}\;{\text{and}}\;{U_2} \in {\Upsilon _2}\} $ is a basis for $ (X,\Upsilon )$. In this paper, the author considers spaces in the class $ \mathcal{C}$, where $ (X,\Upsilon ) \in \mathcal{C}$ iff $ X = \{ {x_\alpha }\vert\alpha < {\omega _1}\} \subseteq {\mathbf{R}}$, $ {\Upsilon _{\mathbf{R}}}$ is the inherited real line topology on $ X$, $ {\Upsilon _{{\omega _1}}}$ is the order topology on $ X$ of type $ {\omega _1}$, and $ \Upsilon $ is the intersection topology w.r.t. $ {\Upsilon _{\mathbf{R}}}$ and $ {\Upsilon _{{\omega _1}}}$. This class is shown to be a surprisingly useful tool in the study of abstract spaces. In particular, it is shown that: (1) If $ X \in \mathcal{C}$, then $ X$ is a completely regular, submetrizable, pseudo-normal, collectionwise Hausdorff, countably metacompact, first countable, locally countable space with a base of countable order that is neither subparacompact, metalindelöf, cometrizable, nor locally compact. (2) $ (\operatorname{MA} + \neg \operatorname{CH} )$ If $ X \in \mathcal{C}$, then $ X$ is perfect. (3) There exists in ZFC an $ X \in \mathcal{C}$ such that $ X$ is not normal. (4) $ (\operatorname{CH} )$ There exists $ X \in \mathcal{C}$ such that $ X$ is collectionwise normal and $ {\omega _1}$-compact but not perfect.


References [Enhancements On Off] (What's this?)

  • [AP] K. Alster and R. Pol, Moore spaces and collectionwise Hausdorff property, Bull. Acad. Polon. Sci. Ser. Math. Astronom. 23 (1975), 1189-1192. MR 0394582 (52:15383)
  • [B] R. H. Bing, Metrization of topological spaces, Canad. J. Math. 3 (1951), 175-186. MR 0043449 (13:264f)
  • [Ch] J. Chaber, Conditions which imply compactness in countably compact spaces, Bull. Acad. Polon. Sci. Ser. Math. Astronom. 24 (1976), 993-998. MR 0515000 (58:24189)
  • [Co] H. Cook, Cartesian products and continuous semi-metrics, preprint.
  • [D] C. H. Dowker, On countably paracompact spaces, Canad. J. Math. 3 (1961), 219-224. MR 0043446 (13:264c)
  • [vDL] E. K. van Douwen and D. J. Lutzer, On the classification of stationary sets, Michigan Math. J. 26 (1979), 47-64. MR 514960 (80h:54038)
  • [F] G. Fodor, Fine Bemerkung zur Theorie der regressiven Funktionen, Acta. Sci Math. (Szeged) 17 (1956), 139-142. MR 0082450 (18:551d)
  • [HJ] A. Hajnal and I. Juhász, On hereditarily $ \alpha $-Lindelöf and hereditarily $ \alpha $-separable spaces, Ann. Univ. Sci. Budapest 9 (1968), 115-124.
  • [K] M. Katětov, Measures in fully normal spaces, Fund. Math. 38 (1951), 73-84. MR 0048531 (14:27c)
  • [L] N. Lusin, Sur un problème de M. Baire, C. R. Hebdomadaires Seances Acad. Sci. Paris 158 (1914), 1258-1261.
  • [M] P. Mahlo, Über Teilmengen des Kontinuums von dessen Machtigkeit, Sitzungsberichte der Sachsischen Akademie der Wissenschaften zu Leipzig, Mathematish-Naturwissenschaftliche Klasse 65, pp. 283-315.
  • [Po] R. Pol, A perfectly normal locally metrizable non-paracompact space, Fund. Math. 97 (1977), 37-42. MR 0464178 (57:4113)
  • [PP] E. Pol and R. Pol, A hereditarily normal strongly zero-dimensional space with a subspace of positive dimension and an $ N$-compact space of positive dimension, Fund. Math. 97 (1977), 43-50. MR 0464179 (57:4114)
  • [Pr] T. Przymusiński, Normality and separability of Moore spaces, Set-Theoretic Topology, Academic Press, New York, 1977, pp. 325-337. MR 0448310 (56:6617)
  • [R$ _{1}$] G. M. Reed, $ Q$-sets and Shelah's Principle, Notices Amer. Math. Soc. 26 (1979), A124.
  • [R$ _{2}$] -, A note on duality in $ S$ and $ L$ spaces, Abstracts Amer. Math. Soc. 2 (1981), 178-179.
  • [R$ _{3}$] -, Submetrizable topologies on the ordinals, Topology and Order Structures (H. R. Bennett and D. J. Lutzer, eds.), Math. Centre Tract 169, Math. Centrum, Amsterdam, 1984, pp. 63-64. MR 736696
  • [R$ _{4}$] -, On normality and countable paracompactness, Notices Amer. Math. Soc. 22 (1975), A126.
  • [R$ _{5}$] -, Collectionwise Hausdorff versus collectionwise normal with respect to compact sets, Topology Appl. 16 (1983), 259-272. MR 722119 (84m:54020)
  • [R$ _{6}$] -, On continuous images of Moore spaces, Canad. J. Math. 26 (1974), 1475-1479. MR 0397672 (53:1530)
  • [R$ _{7}$] -, On chain conditions in Moore spaces, General Topology Appl. 4 (1974), 255-267. MR 0345076 (49:9815)
  • [R$ _{8}$] -, Concerning first countable spaces, III, Trans. Amer. Math. Soc. 210 (1975), 169-177. MR 0372828 (51:9032)
  • [R$ _{9}$] -, On the existence of point-countable bases in Moore spaces, Proc. Amer. Math. Soc. 45 (1974), 437-440. MR 0348713 (50:1210)
  • [R$ _{10}$] -, On subspaces of separable first countable $ {T_2}$-spaces, Fund. Math. 91 (1976), 199-211.
  • [S] T. Shinoda, Some consequences of Martin's Axiom and the negation of the continuum hypothesis, Nagoya Math. J. 49 (1973), 117-125. MR 0319754 (47:8296)
  • [T] F. D. Tall, Set-theoretic consistency results and topological theorems concerning the normal Moore space conjecture and related problems, Ph. D. Thesis, Univ. of Wisconsin, 1969.
  • [U] S. Ulam, Zur masstheorie in der allgeneinen Mengenlehre, Fund. Math. 16 (1930), 141-150.
  • [Wa] M. L. Wage, A collectionwise Hausdorff nonnormal Moore space, Canad. J. Math. 28 (1976), 632-634. MR 0405363 (53:9157)
  • [Wo] J. M. Worrell, Isolated sets of points in non-metrizable spaces, Notices Amer. Math. Soc. 11 (1964), 250.
  • [WW] J. M. Worrell and H. H. Wicke, Characterizations of developable topological spaces, Canad. J. Math. 17 (1965), 820-830. MR 0182945 (32:427)
  • [Z] P. Zenor, On countable paracompactness and normality, Prace Math. 13 (1969), 23-32. MR 0248724 (40:1975)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 54A10, 03E50, 54A35, 54D18

Retrieve articles in all journals with MSC: 54A10, 03E50, 54A35, 54D18


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1986-0854081-9
Keywords: Intersection topology, collectionwise normal, collectionwise Hausdorff, subparacompact, submetrizable, separable metric spaces
Article copyright: © Copyright 1986 American Mathematical Society

American Mathematical Society