Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

A topological proof of the equivariant Dehn lemma


Author: Allan L. Edmonds
Journal: Trans. Amer. Math. Soc. 297 (1986), 605-615
MSC: Primary 57M35; Secondary 57N10, 57S17
DOI: https://doi.org/10.1090/S0002-9947-1986-0854087-X
MathSciNet review: 854087
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: An elementary topological proof is given for a completely general version of the Equivariant Dehn Lemma, in the spirit of the original proof of the nonequivariant version due to C. D. Papakyriakopolous in 1957.


References [Enhancements On Off] (What's this?)

  • [H] Bass and J. W. Morgan (eds.), The Smith conjecture, Academic Press, New York, 1984. MR 758459 (86i:57002)
  • [G] E. Bredon, Introduction to compact transformation groups, Academic Press, New York, 1972. MR 0413144 (54:1265)
  • [M] J. Dunwoody, An equivariant sphere theorem, preprint, 1984. MR 806009 (87f:57008)
  • [A] L. Edmonds, On the equivariant Dehn lemma, Proc. Conf. on Combinatorial Methods in Topology and Algebraic Geometry (Rochester, N.Y., 1982), Contemp. Math., Vol. 44, Amer. Math. Soc., Providence, R. I., 1985, pp. 141-147. MR 813109 (87b:57012)
  • [M] H. Freedman and S.-T. Yau, Homotopically trivial symmetries of Haken manifolds are toral, Topology 22 (1983), 179-189. MR 683759 (84d:57006)
  • [J] Hempel, $ 3$-manifolds, Ann. of Math. Studies, no. 86, Princeton Univ. Press, Princeton, N. J., 1976. MR 0415619 (54:3702)
  • [W] H. Meeks III and G. P. Scott, Finite groups actions on $ 3$-manifolds, preprint, 1983.
  • [W] H. Meeks III and S.-T. Yau, The equivariant Dehn's lemma and the loop theorem, Comment. Math. Helv. 56 (1981), 225-239. MR 630952 (83b:57006)
  • [C] D. Papakyriakopolous, On Dehn's lemma and the asphericity of knots, Ann. of Math. 66 (1957), 1-26. MR 0090053 (19:761a)
  • [G] P. Scott, There are no fake Seifert fibre spaces with infinite $ {\pi _1}$, Ann. of Math. 117 (1983), 35-70. MR 683801 (84c:57008)
  • [A] Shapiro and J. H. C. Whitehead, A proof and extension of Dehn's lemma, Bull. Amer. Math. Soc. 64 (1958), 174-178. MR 0103474 (21:2242)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 57M35, 57N10, 57S17

Retrieve articles in all journals with MSC: 57M35, 57N10, 57S17


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1986-0854087-X
Article copyright: © Copyright 1986 American Mathematical Society

American Mathematical Society