Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Boundary behavior of a nonparametric surface of prescribed mean curvature near a reentrant corner

Authors: Alan R. Elcrat and Kirk E. Lancaster
Journal: Trans. Amer. Math. Soc. 297 (1986), 645-650
MSC: Primary 35J60
MathSciNet review: 854090
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \Omega $ be an open set in $ {{\mathbf{R}}^2}$ which is locally convex at each point of its boundary except one, say $ (0,0)$. Under certain mild assumptions, the solution of a prescribed mean curvature equation on $ \Omega $ behaves as follows: All radial limits of the solution from directions in $ \Omega $ exist at $ (0,0)$, these limits are not identical, and the limits from a certain half-space $ (H)$ are identical. In particular, the restriction of the solution to $ \Omega \cap H$ is the solution of an appropriate Dirichlet problem.

References [Enhancements On Off] (What's this?)

  • [1] R. Courant, Dirichlet’s Principle, Conformal Mapping, and Minimal Surfaces, Interscience Publishers, Inc., New York, N.Y., 1950. Appendix by M. Schiffer. MR 0036317
  • [2] R. Courant and D. Hilbert, Methods of mathematical physics, Vol. 2, Interscience, New York, 1962.
  • [3] Robert Finn, Remarks relevant to minimal surfaces, and to surfaces of prescribed mean curvature, J. Analyse Math. 14 (1965), 139–160. MR 0188909
  • [4] Claus Gerhardt, Existence, regularity, and boundary behavior of generalized surfaces of prescribed mean curvature, Math. Z. 139 (1974), 173–198. MR 0437925
  • [5] Enrico Giusti, On the equation of surfaces of prescribed mean curvature. Existence and uniqueness without boundary conditions, Invent. Math. 46 (1978), no. 2, 111–137. MR 0487722
  • [6] Erhard Heinz, Über das Randverhalten quasilinearer elliptischer Systeme mit isothermen Parametern, Math. Z. 113 (1970), 99–105 (German). MR 0262683
  • [7] O. A. Ladyzhenskaya and N. N. Ural′tseva, Local estimates for gradients of solutions of non-uniformly elliptic and parabolic equations, Comm. Pure Appl. Math. 23 (1970), 677–703. MR 0265745
  • [8] Kirk E. Lancaster, Boundary behavior of a nonparametric minimal surface in 𝑅³ at a nonconvex point, Analysis 5 (1985), no. 1-2, 61–69. MR 791492
  • [9] James Serrin, The Dirichlet problem for surfaces of constant mean curvature, Proc. London Math. Soc. (3) 21 (1970), 361–384. MR 0275336
  • [10] Neil S. Trudinger, Gradient estimates and mean curvature, Math. Z. 131 (1973), 165–175. MR 0324187

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 35J60

Retrieve articles in all journals with MSC: 35J60

Additional Information

Article copyright: © Copyright 1986 American Mathematical Society