Boundary behavior of a nonparametric surface of prescribed mean curvature near a reentrant corner

Authors:
Alan R. Elcrat and Kirk E. Lancaster

Journal:
Trans. Amer. Math. Soc. **297** (1986), 645-650

MSC:
Primary 35J60

MathSciNet review:
854090

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let be an open set in which is locally convex at each point of its boundary except one, say . Under certain mild assumptions, the solution of a prescribed mean curvature equation on behaves as follows: All radial limits of the solution from directions in exist at , these limits are not identical, and the limits from a certain half-space are identical. In particular, the restriction of the solution to is the solution of an appropriate Dirichlet problem.

**[1]**R. Courant,*Dirichlet’s Principle, Conformal Mapping, and Minimal Surfaces*, Interscience Publishers, Inc., New York, N.Y., 1950. Appendix by M. Schiffer. MR**0036317****[2]**R. Courant and D. Hilbert,*Methods of mathematical physics*, Vol. 2, Interscience, New York, 1962.**[3]**Robert Finn,*Remarks relevant to minimal surfaces, and to surfaces of prescribed mean curvature*, J. Analyse Math.**14**(1965), 139–160. MR**0188909****[4]**Claus Gerhardt,*Existence, regularity, and boundary behavior of generalized surfaces of prescribed mean curvature*, Math. Z.**139**(1974), 173–198. MR**0437925****[5]**Enrico Giusti,*On the equation of surfaces of prescribed mean curvature. Existence and uniqueness without boundary conditions*, Invent. Math.**46**(1978), no. 2, 111–137. MR**0487722****[6]**Erhard Heinz,*Über das Randverhalten quasilinearer elliptischer Systeme mit isothermen Parametern*, Math. Z.**113**(1970), 99–105 (German). MR**0262683****[7]**O. A. Ladyzhenskaya and N. N. Ural′tseva,*Local estimates for gradients of solutions of non-uniformly elliptic and parabolic equations*, Comm. Pure Appl. Math.**23**(1970), 677–703. MR**0265745****[8]**Kirk E. Lancaster,*Boundary behavior of a nonparametric minimal surface in 𝑅³ at a nonconvex point*, Analysis**5**(1985), no. 1-2, 61–69. MR**791492****[9]**James Serrin,*The Dirichlet problem for surfaces of constant mean curvature*, Proc. London Math. Soc. (3)**21**(1970), 361–384. MR**0275336****[10]**Neil S. Trudinger,*Gradient estimates and mean curvature*, Math. Z.**131**(1973), 165–175. MR**0324187**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
35J60

Retrieve articles in all journals with MSC: 35J60

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1986-0854090-X

Article copyright:
© Copyright 1986
American Mathematical Society