Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Hypoelliptic convolution equations in the space $ {\scr K}'\sb e$


Author: Dae Hyeon Pahk
Journal: Trans. Amer. Math. Soc. 298 (1986), 485-495
MSC: Primary 35H05; Secondary 35D99, 46F10
DOI: https://doi.org/10.1090/S0002-9947-1986-0860376-5
MathSciNet review: 860376
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We consider convolution equations in the space $ \mathcal{K}_e' $ of distributions which "grow" no faster than $ \exp ({e^{k\vert x\vert}})$ for some constant $ k$. Our main results are to find conditions for convolution operators to be hypoelliptic in $ \mathcal{K}_e'$ in terms of their Fourier transforms.


References [Enhancements On Off] (What's this?)

  • [1] L. Ehrenpreis, Solutions of some problems of division. IV, Amer. J. Math. 82 (1960), 522-588. MR 0119082 (22:9848)
  • [2] I. M. Gel'fand and G. E. Shilov, Generalized functions, Vols. I, II, III, Academic Press, New York, 1968. MR 0230128 (37:5693)
  • [3] L. Hörmander, Hypoelliptic convolution equations, Math. Scand. 9 (1961), 178-184. MR 0139838 (25:3265)
  • [4] D. H. Pahk, Structure theorem and Fourier transform for distributions with restricted growth, Kyungpook Math. 23 (1983), 129-146. MR 726128 (86b:46061)
  • [5] -, On the convolution equations in the space of distributions of $ {L^p}$-growth, Proc. Amer. Math. Soc. 94 (1985), 81-86. MR 781061 (86j:46037)
  • [6] G. Sampson and Z. Zielézny, Hypoelliptic convolution equations in $ \mathcal{K}_p'$, $ p > 1$, Trans. Amer. Math. Soc. 223 (1976), 133-154. MR 0425607 (54:13561)
  • [7] Z. Zielézny, Hypoelliptic and entire elliptic convolution equations in subspace of the space of distributions. I, Studia Math. 28 (1967), 317-332. MR 0222476 (36:5528)
  • [8] -, Hypoelliptic and entire elliptic convolution equations in subspace of the space of distributions. II, Studia Math. 32 (1969), 47-59. MR 0248521 (40:1773)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 35H05, 35D99, 46F10

Retrieve articles in all journals with MSC: 35H05, 35D99, 46F10


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1986-0860376-5
Article copyright: © Copyright 1986 American Mathematical Society

American Mathematical Society