Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Crossed products and inner actions of Hopf algebras


Authors: Robert J. Blattner, Miriam Cohen and Susan Montgomery
Journal: Trans. Amer. Math. Soc. 298 (1986), 671-711
MSC: Primary 16A24; Secondary 16A03, 16A72, 46L40
DOI: https://doi.org/10.1090/S0002-9947-1986-0860387-X
MathSciNet review: 860387
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This paper develops a theory of crossed products and inner (weak) actions of arbitrary Hopf algebras on noncommutative algebras. The theory covers the usual examples of inner automorphisms and derivations, and in addition is general enough to include "inner" group gradings of algebras. We prove that if $ \pi :H \to \overline H $ is a Hopf algebra epimorphism which is split as a coalgebra map, then $ H$ is algebra isomorphic to $ A{\char93 _\sigma }H$, a crossed product of $ H$ with the left Hopf kernel $ A$ of $ \pi $. Given any crossed product $ A{\char93 _\sigma }H$ with $ H$ (weakly) inner on $ A$, then $ A{\char93 _\sigma }H$ is isomorphic to a twisted product $ {A_\tau }[H]$ with trivial action. Finally, if $ H$ is a finite dimensional semisimple Hopf algebra, we consider when semisimplicity or semiprimeness of $ A$ implies that of $ A{\char93 _\sigma }H$; in particular this is true if the (weak) action of $ H$ is inner.


References [Enhancements On Off] (What's this?)

  • [1] J. Bergen and M. Cohen, Actions of commutative Hopf algebras, Bull. London Math. Soc. 18 (1986), 159-164. MR 818820 (87e:16052)
  • [2] R. J. Blattner and S. Montgomery, A duality theorem for Hopf module algebras, J. Algebra 95 (1985), 153-172. MR 797661 (87h:16016)
  • [3] M. Cohen and D. Fishman, Hopf algebra actions, J. Algebra 100 (1986), 363-379. MR 840582 (87i:16012)
  • [4] M. Cohen and S. Montgomery, Group-graded rings, smash products, and group actions, Trans. Amer. Math. Soc. 282 (1984), 237-258. MR 728711 (85i:16002)
  • [5] E. C. Dade, Group graded rings and modules, Math. Z. 174 (1980), 241-262. MR 593823 (82c:16028)
  • [6] J. Dixmier, Enveloping algebras, North-Holland, Amsterdam, 1977. MR 0498740 (58:16803b)
  • [7] Harish-Chandra, On representations of Lie algebras, Ann. of Math. (2) 50 (1949), 900-915. MR 0030945 (11:77b)
  • [8] I. Kaplansky, Hopf algebras, Univ. of Chicago Lecture Notes, 1975.
  • [9] V. K. Kharchenko, The actions of groups and Lie algebras on noncommutative rings, Russian Math. Surveys 35:2 (1980), 77-104. MR 571647 (82c:16032)
  • [10] M. Landstad, J. Phillips, I. Raeburn and C. Sutherland, Representations of crossed products by coactions and principal bundles (to appear). MR 869232 (88f:46127)
  • [11] R. Larson and M. E. Sweedler, An associative orthogonal bilinear form for Hopf algebras, Amer. J. Math. 91 (1969), 75-94. MR 0240169 (39:1523)
  • [12] M. Lorenz, Primitive ideals in crossed products and rings with finite group actions, Math. Z. 158 (1978), 285-294. MR 0480612 (58:768)
  • [13] M. Lorenz and D. S. Passman, Two applications of Maschke's theorem, Comm. Algebra 8 (1980), 1853-1866. MR 588448 (81k:16009)
  • [14] -, Prime ideals in group algebras of polycyclic-by-finite groups, Proc. London Math. Soc. 43 (1981), 520-543. MR 635568 (83j:20017)
  • [15] W. Magnus, A. Karrass, and D. Solitar, Combinatorial group theory, Interscience, New York, 1966.
  • [16] S. Montgomery, Fixed rings of finite automorphism groups of associative rings, Lecture Notes in Math., vol. 818, Springer-Verlag, Berlin, 1980. MR 590245 (81j:16041)
  • [17] -, $ X$-inner automorphisms of filtered algebras, Proc. Amer. Math. Soc. 83 (1981), 263-268. MR 624911 (82j:16002)
  • [18] S. Montgomery and D. S. Passman, Crossed products over prime rings, Israel J. Math. 31 (1978), 224-256. MR 516150 (80a:16022)
  • [19] -, $ X$-inner automorphisms of group rings, Houston J. Math. 7 (1981), 395-402. MR 640981 (83d:16038)
  • [20] -, $ X$-inner automorphisms of crossed products and semiinvariants of Hopf algebras, Isreal J. Math. (to appear).
  • [21] Y. Nakagami and M. Takesaki, Duality for crossed products of von Neumann algebras, Lecture Notes in Math., vol. 731, Springer-Verlag, Berlin, 1979. MR 546058 (81e:46053)
  • [22] G. Pedersen, $ {C^{\ast}}$-algebras and their automorphism groups, Academic Press, London, 1979. MR 548006 (81e:46037)
  • [23] R. Steinberg, Complete sets of representatives of algebras, Proc. Amer. Math. Soc. 13 (1962), 746-747. MR 0141710 (25:5107)
  • [24] M. E. Sweedler, Cohomology of algebras over Hopf algebras, Trans. Amer. Math. Soc. 133 (1968), 205-239. MR 0224684 (37:283)
  • [25] -, Hopf algebras, Benjamin, New York, 1969. MR 0252485 (40:5705)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 16A24, 16A03, 16A72, 46L40

Retrieve articles in all journals with MSC: 16A24, 16A03, 16A72, 46L40


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1986-0860387-X
Article copyright: © Copyright 1986 American Mathematical Society

American Mathematical Society