Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Tameness and local normal bases for objects of finite Hopf algebras


Authors: Lindsay N. Childs and Susan Hurley
Journal: Trans. Amer. Math. Soc. 298 (1986), 763-778
MSC: Primary 13B05; Secondary 13B15, 13E15, 16A24
DOI: https://doi.org/10.1090/S0002-9947-1986-0860392-3
MathSciNet review: 860392
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ R$ be a commutative ring, $ S$ an $ R$-algebra, $ H$ a Hopf $ R$algebra, both finitely generated and projective as $ R$-modules, and suppose $ S$ is an $ H$-object, so that $ {H^{\ast}} = {\operatorname{Hom} _R}(H,R)$ acts on $ S$ via a measuring. Let $ I$ be the space of left integrals of $ {H^{\ast}}$. We say $ S$ has normal basis if $ S \cong H$ as $ {H^{\ast}}$modules, and $ S$ has local normal bases if $ {S_p} \cong {H_p}$ as $ H_p^{\ast}$-modules for all prime ideals $ p$ of $ R$. When $ R$ is a perfect field, $ H$ is commutative and cocommutative, and certain obvious necessary conditions on $ S$ hold, then $ S$ has normal basis if and only if $ IS = R = {S^{{H^{\ast}}}}$. If $ R$ is a domain with quotient field $ K$, $ H$ is cocommutative, and $ L = S \otimes {}_RK$ has normal basis as $ ({H^{\ast}} \otimes K)$-module, then $ S$ has local normal bases if and only if $ IS = R = {S^{{H^{\ast}}}}$.


References [Enhancements On Off] (What's this?)

  • [1] M. Auslander and D. Rim, Ramification index and multiplicity, Illinois J. Math. 7 (1963), 566-581. MR 0155853 (27:5787)
  • [2] A. D. Barnard, Commutative rings with operators (Galois theory and ramification), Proc. London Math. Soc. (3) 28 (1974), 274-290. MR 0337921 (49:2690)
  • [3] N. Bourbaki, Algèbre commutative, Chapitres I and II, Hermann, Paris, 1961. MR 0171800 (30:2027)
  • [4] J. Cassels and A. Frohlich (eds.), Algebraic number theory, Thompson, Washington, D. C., 1967. MR 0215665 (35:6500)
  • [5] S. Chase, Infinitesimal group scheme actions on finite field extensions, Amer. J. Math. 98 (1976), 441-480. MR 0424773 (54:12731)
  • [6] S. Chase, D. Harrison and A. Rosenberg, Galois theory and Galois cohomology over a commutative ring, Mem. Amer. Math. Soc. No. 52 (1965), 15-33. MR 0195922 (33:4118)
  • [7] S. Chase and M. Sweedler, Hopf algebra and Galois theory, Lecture Notes in Math., vol. 97, Springer-Verlag, Berlin and New York, 1969. MR 0260724 (41:5348)
  • [8] L. Childs, Azumaya algebras over number rings as smash products (preprint).
  • [9] -, Taming wild extensions with Hopf algebras (preprint).
  • [10] E. Dade, The equivalence of various generalizations of group rings and modules, Math. Z. 181 (1982), 335-344. MR 678889 (84a:16018)
  • [11] F. DeMeyer and E. Ingraham, Separable algebras over commutative rings, Lecture Notes in Math., vol. 181, Springer-Verlag, Berlin and New York, 1971. MR 0280479 (43:6199)
  • [12] A. Frohlich, Galois module structure of algebraic integers, Springer-Verlag, Berlin and New York, 1983. MR 717033 (85h:11067)
  • [13] S. Hurley, Tame and Galois Hopf objects with normal bases, Thesis, SUNY at Albany, 1984.
  • [14] -, Galois objects with normal bases for free Hopf algebras or prime degree, J. Algebra (to appear). MR 902954 (88k:13003)
  • [15] H. F. Kreimer and P. Cook, Galois theories and normal bases, J. Algebra 43 (1976), 115-121. MR 0424782 (54:12740)
  • [16] H. Kreimer and M. Takeuchi, Hopf algebras and Galois extensions of an algebra, Indiana Univ. Math. J. 30 (1981), 675-692. MR 625597 (83h:16015)
  • [17] H. F. Kreimer, Quadratic Hopf algebras and Galois extensions, Contemp. Math. 13 (1981), 353-361. MR 685971 (84b:16039)
  • [18] H. W. Leopoldt, Uber die Hauptordnung der ganzen Elemente eines abelschen Zahlkorpers, J. Reine Angew. Math. 201 (1959), 119-149. MR 0108479 (21:7195)
  • [19] I. Reiner, Maximal orders, Academic Press, London, 1975. MR 1972204 (2004c:16026)
  • [20] J.-P. Serre, Representations linears des groupes fini, Hermann, Paris, 1971. MR 0352231 (50:4718)
  • [21] M. Sweedler, Hopf algebras, Benjamin, New York, 1969. MR 0252485 (40:5705)
  • [22] J. Tate and F. Oort, Group schemes of prime order, Ann. Sci. École Norm. Sup. (4) 3 (1970), 1-21. MR 0265368 (42:278)
  • [23] W. Waterhouse, Introduction to affine group schemes, Springer-Verlag, Berlin and New York, 1979. MR 547117 (82e:14003)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 13B05, 13B15, 13E15, 16A24

Retrieve articles in all journals with MSC: 13B05, 13B15, 13E15, 16A24


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1986-0860392-3
Article copyright: © Copyright 1986 American Mathematical Society

American Mathematical Society