Construction of group actions on four-manifolds

Author:
Allan L. Edmonds

Journal:
Trans. Amer. Math. Soc. **299** (1987), 155-170

MSC:
Primary 57N13; Secondary 57N15, 57S17, 57S25

DOI:
https://doi.org/10.1090/S0002-9947-1987-0869405-7

MathSciNet review:
869405

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It is shown that any cyclic group of odd prime order acts on any closed, simply connected topological -manifold, inducing the identity on integral homology. The action is locally linear except perhaps at one isolated fixed point. In the case of primes greater than three a more careful argument is used to show that the action can be constructed to be locally linear.

**[G]**Glen E. Bredon,*Introduction to compact transformation groups*, Academic Press, New York-London, 1972. Pure and Applied Mathematics, Vol. 46. MR**0413144****[S]**Sylvain E. Cappell and Julius L. Shaneson,*The codimension two placement problem and homology equivalent manifolds*, Ann. of Math. (2)**99**(1974), 277–348. MR**0339216**, https://doi.org/10.2307/1970901**[A]**L. Edmonds,*Preliminary notes on finite group actions on four-manifolds*, unpublished notes, 1984.**[M]**Michael Hartley Freedman,*The topology of four-dimensional manifolds*, J. Differential Geom.**17**(1982), no. 3, 357–453. MR**679066****1.**Michael H. Freedman,*The disk theorem for four-dimensional manifolds*, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Warsaw, 1983) PWN, Warsaw, 1984, pp. 647–663. MR**804721****[M]**Marvin J. Greenberg and John R. Harper,*Algebraic topology*, Mathematics Lecture Note Series, vol. 58, Benjamin/Cummings Publishing Co., Inc., Advanced Book Program, Reading, Mass., 1981. A first course. MR**643101****[F]**F. Hirzebruch, W. D. Neumann, and S. S. Koh,*Differentiable manifolds and quadratic forms*, Marcel Dekker, Inc., New York, 1971. Appendix II by W. Scharlau; Lecture Notes in Pure and Applied Mathematics, Vol. 4. MR**0341499****[F]**Hirzebruch and D. Zagier,*The Atiyah-Singer index theorem and elementary number theory*, Publish or Perish, Boston, 1973.**[W]**W. C. Hsiang and R. H. Szczarba,*On embedding surfaces in four-manifolds*, Algebraic topology (Proc. Sympos. Pure Math., Vol. XXII, Univ. Wisconsin, Madison, Wis., 1970) Amer. Math. Soc., Providence, R.I., 1971, pp. 97–103. MR**0339239****[S]**Sławomir Kwasik,*On the symmetries of the fake 𝐶𝑃²*, Math. Ann.**274**(1986), no. 3, 385–389. MR**842620**, https://doi.org/10.1007/BF01457223**[S]**Sławomir Kwasik and Pierre Vogel,*Asymmetric four-dimensional manifolds*, Duke Math. J.**53**(1986), no. 3, 759–764. MR**860670**, https://doi.org/10.1215/S0012-7094-86-05341-X**2.**-,*Non-locally smoothable topological symmetries of four manifolds*, Preprint, 1985.**[J]**John Milnor,*A duality theorem for Reidemeister torsion*, Ann. of Math. (2)**76**(1962), 137–147. MR**0141115**, https://doi.org/10.2307/1970268**3.**J. Milnor,*Whitehead torsion*, Bull. Amer. Math. Soc.**72**(1966), 358–426. MR**0196736**, https://doi.org/10.1090/S0002-9904-1966-11484-2**[L]**Laurence R. Taylor,*Relative Rochlin invariants*, Topology Appl.**18**(1984), no. 2-3, 259–280. MR**769295**, https://doi.org/10.1016/0166-8641(84)90014-2**[C]**C. T. C. Wall,*Surgery on compact manifolds*, Academic Press, London-New York, 1970. London Mathematical Society Monographs, No. 1. MR**0431216****[S]**Steven H. Weintraub,*Semi-free 𝑍_{𝑝}-actions on highly-connected manifolds*, Math. Z.**145**(1975), no. 2, 163–185. MR**0400268**, https://doi.org/10.1007/BF01214781**4.**Steven H. Weintraub,*Topological realization of equivariant intersection forms*, Pacific J. Math.**73**(1977), no. 1, 257–280. MR**0494175**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
57N13,
57N15,
57S17,
57S25

Retrieve articles in all journals with MSC: 57N13, 57N15, 57S17, 57S25

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1987-0869405-7

Article copyright:
© Copyright 1987
American Mathematical Society