The dimension of closed sets in the Stone-Čech compactification

Author:
James Keesling

Journal:
Trans. Amer. Math. Soc. **299** (1987), 413-428

MSC:
Primary 54D35; Secondary 54D40, 54F45

DOI:
https://doi.org/10.1090/S0002-9947-1987-0869420-3

MathSciNet review:
869420

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper properties of compacta in are studied for Lindelöf spaces . If , then there is a mapping such that is onto and every mapping homotopic to is onto. This implies that there is an essential family for consisting of disjoint pairs of closed sets. It also implies that if with each closed, then there is a such that .

Assume is a compactum in as above. Then if , there is a closed set in such that and such that every nonempty -set in contains an -dimensional compactum. This holds for finite or infinite. If and with each closed, then there must be a such that .

**[1]**A. Calder and J. Siegel,*Homotopy and uniform homotopy*, Trans. Amer. Math. Soc.**235**(1978), 245-269. MR**0458416 (56:16619)****[2]**-,*Homotopy and uniform homotopy*. II, Proc. Amer. Math. Soc.**78**(1980), 288-290. MR**550515 (81c:55029)****[3]**R. Engelking,*Dimension theory*, North-Holland, Amsterdam, 1978. MR**0482697 (58:2753b)****[4]**L. Gillman and M. Jerison,*Rings of continuous functions*, Van Nostrand, Princeton, N. J., 1960. MR**0116199 (22:6994)****[5]**W. E. Haver,*Locally contractible spaces that are absolute neighborhood retracts*, Proc. Amer. Math. Soc.**40**(1978), 280-284. MR**0331311 (48:9645)****[6]**W. Hurewicz and H. Wallman,*Dimension theory*, Princeton Univ. Press, Princeton, N. J., 1941. MR**0006493 (3:312b)****[7]**J. R. Isbell,*Uniform spaces*, Amer. Math. Soc., Providence, R. I., 1964. MR**0170323 (30:561)****[8]**J. Keesling,*Shape theory and compact connected abelian topological groups*, Trans. Amer. Math. Soc.**194**(1974), 349-358. MR**0345064 (49:9803)****[9]**-,*Continuous functions induced by shape morphisms*, Proc. Amer. Math. Soc.**41**(1973), 315-320. MR**0334141 (48:12460)****[10]**-,*Decompositions of the Stone-Čech compactification which are shape equivalences*, Pacific J. Math.**75**(1978), 455-466. MR**0514986 (58:24175)****[11]**-,*The Stone-Čech compactification and shape dimension*, Topology Proc.**2**(1977), 483-508. MR**540625 (80j:54030)****[12]**J. Keesling and R. B. Sher,*Shape properties of the Stone-Čech compactification*, General Topology App.**9**(1978), 1-8. MR**0478105 (57:17594)****[13]**S. Mardešić and J. Segal,*Shape theory*, North-Holland, Amsterdam, 1982. MR**676973 (84b:55020)****[14]**J. Nagata,*Modern dimension theory*, Wiley, New York, 1965. MR**0208571 (34:8380)****[15]**A. R. Pears,*Dimension theory of general spaces*, Cambridge Univ. Press, Cambridge, 1975. MR**0394604 (52:15405)****[16]**R. C. Walker,*The Stone-Čech compactification*, Springer-Verlag, New York, 1974. MR**0380698 (52:1595)****[17]**A. Winslow,*There are**nonhomeomorphic continua in*, Pacific J. Math.**84**(1979), 233-239. MR**559641 (81a:54025)**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
54D35,
54D40,
54F45

Retrieve articles in all journals with MSC: 54D35, 54D40, 54F45

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1987-0869420-3

Keywords:
Stone-Čech compactification,
Lindelöf space,
dimension,
homotopically onto,
-torus,
essential family,
sum theorem

Article copyright:
© Copyright 1987
American Mathematical Society