Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



The variation of the de Rham zeta function

Author: Steven Rosenberg
Journal: Trans. Amer. Math. Soc. 299 (1987), 535-557
MSC: Primary 58G10; Secondary 58G25
MathSciNet review: 869220
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Special values of the zeta function $ \zeta (s)$ for the Laplacian on forms $ \Delta $ on a compact Riemannian manifold are known to have geometric significance. We compute the variation of these special values with respect to the variation of the metric and write down the Euler-Lagrange equation for conformal variations. The invariant metric on a locally symmetric space is shown to be critical for every local Lagrangian. We also compute the variation of $ \zeta '(0)$, or equivalently of det $ \Delta $. Finally, flat manifolds are characterized by flatness at a point and a condition on the amplitudes of the eigenforms of $ \Delta $.

References [Enhancements On Off] (What's this?)

  • [ABP] M. F. Atiyah, R. Bott, and V. K. Patodi, On the heat equation and the index theorem, Invent. Math. 19 (1973), 279-330. MR 0650828 (58:31287)
  • [B1] D. Bleecker, Critical Riemannian manifolds, J. Differential Geom. 14 (1979), 599-608. MR 600616 (82g:58024)
  • [B2] -, Determination of a Riemannian metric from the first variation of its spectrum, Amer. J. Math. (to appear). MR 796904 (86k:58124)
  • [BE] M. Berger and D. Ebin, Some decompositions of the space of symmetric tensors on a Riemannian manifold, J. Differential Geom. 3 (1969), 379-392. MR 0266084 (42:993)
  • [C] J. Cheeger, Analytic torsion and the heat equation, Ann. of Math. (2) 109 (1979), 259-322. MR 528965 (80j:58065a)
  • [CGW] R. Cahn, P. B. Gilkey, and J. A. Wolf, Heat equation, proportionality principle, and volume of fundamental domains, Differential Geometry and Relativity (D. Cohen and M. Flato, eds.), Reidel, Holland, 1976, pp. 43-54. MR 0436222 (55:9170)
  • [G1] P. B. Gilkey, The spectral geometry of a Riemannian manifold, J. Differential Geom. 10 (1975), 601-618. MR 0400315 (53:4150)
  • [G2] -, The spectral geometry of symmetric spaces, Trans. Amer. Math. Soc. 225 (1977), 341-353. MR 0423258 (54:11238)
  • [G3] -, Recursion relations and the asymptotic behavior of the eigenvalues of the Laplacian, Compositio Math. 38 (1979), 201-240. MR 528840 (80i:53020)
  • [MS] H. P. McKean and I. M. Singer, Curvature and the eigenvalues of the Laplacian, J. Differential Geom. 1 (1967), 43-69. MR 0217739 (36:828)
  • [P1] R. Palais, Applications of the symmetric critically principle to mathematical physics and differential geometry, Sonderforschungsbereich 40, Universität Bonn.
  • [P] V. K. Patodi, Curvature and the eigenforms of the Laplace operator, J. Differential Geom. 5 (1971), 233-249. MR 0292114 (45:1201)
  • [R] H. Rademacher, Topics in analytic number theory, Grundlehren Math. Wiss., Band 169, Springer-Verlag, Berlin, and New York, 1973. MR 0364103 (51:358)
  • [de R] G. de Rham, Variétés différentiables, Hermann, Paris, 1960.
  • [RS] D. B. Ray and I. M. Singer, $ R$-torsion and the Laplacian on Riemannian manifolds, Adv. in Math. 7 (1971), 145-210. MR 0295381 (45:4447)
  • [T] C. L. Terng, unpublished.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 58G10, 58G25

Retrieve articles in all journals with MSC: 58G10, 58G25

Additional Information

Article copyright: © Copyright 1987 American Mathematical Society

American Mathematical Society