Parallel translation of curvature along geodesics

Author:
James J. Hebda

Journal:
Trans. Amer. Math. Soc. **299** (1987), 559-572

MSC:
Primary 53C20; Secondary 34A10

DOI:
https://doi.org/10.1090/S0002-9947-1987-0869221-6

MathSciNet review:
869221

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: According to the Cartan-Ambrose-Hicks Theorem, two simply-connected, complete Riemannian manifolds are isometric if, given a certain correspondence between all the broken geodesics emanating from a point in one manifold, and all those emanating from a point in the other, the parallel translates of the curvature tensor agree along corresponding broken geodesics. For generic metrics on a surface, the hypothesis can be refined so that it is enough to compare curvature along corresponding unbroken geodesics in order to obtain the isometry.

**[1]**W. Ambrose,*Parallel translation of Riemannian curvature*, Ann. of Math.**64**(1956), 337-363. MR**0102841 (21:1627)****[2]**W. Blaschke,*Differential geometry*. I, Chelsea, New York, 1967.**[3]**M. Buchner,*Simplicial structure of the real analytic cut locus*, Proc. Amer. Math. Soc.**66**(1977), 118-121. MR**0474133 (57:13783)****[4]**J. Cheeger and D. Ebin,*Comparison theorems in Riemannian geometry*, North-Holland, Amsterdam, 1975. MR**0458335 (56:16538)****[5]**M. M. Cohen,*A course in simple-homotopy theory*, Springer-Verlag, Berlin and New York, 1973. MR**0362320 (50:14762)****[6]**H. Federer,*Geometric measure theory*, Springer-Verlag, Berlin and New York, 1969. MR**0257325 (41:1976)****[7]**H. Gluck and D. Singer,*Scattering of geodesic fields*. I, Ann. of Math. (2)**108**(1978), 347-372. MR**506991 (80c:53046)****[8]**J. Hebda,*Conjugate and cut loci and the Cartan-Ambrose-Hicks theorem*, Indiana Univ. Math. J.**31**(1982), 17-25. MR**642612 (83j:53032)****[9]**-,*The local homology of cut loci in Riemannian manifolds*, Tôhoku Math. J.**35**(1983), 45-52. MR**695658 (84g:53066)****[10]**S. Kobayashi and K. Nomizu,*Foundations of differential geometry*. I, Interscience, New York and London, 1963. MR**0152974 (27:2945)****[11]**S. B. Myers,*Riemannian manifolds in the large*, Duke Math. J.**1**(1935), 39-49. MR**1545863****[12]**-,*Connections between differential geometry and topology*. I, II, Duke Math. J.**1**(1935), 376-391; ibid.**2**(1936), 95-102. MR**1545908****[13]**J. F. Nash,*The imbedding problem for Riemannian manifolds*, Ann. of Math. (2)**63**(1956), 20-63. MR**0075639 (17:782b)****[14]**V. Ozols,*Cut loci in Riemannian manifolds*, Tôhoku Math. J.**26**(1974), 219-227. MR**0390967 (52:11790)****[15]**C. T. C. Wall,*Geometric properties of generic differential manifolds*, Geometry and Topology, Lecture Notes in Math., vol. 597, Springer-Verlag, Berlin and New York, 1977. MR**0494233 (58:13144)****[16]**W. Walter, Differential and integral inequalities, Springer-Verlag, Berlin and New York, 1970. MR**0271508 (42:6391)****[17]**F. W. Warner,*Conjugate loci of constant order*, Ann. of Math. (2)**86**(1967), 192-212. MR**0214005 (35:4857)**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
53C20,
34A10

Retrieve articles in all journals with MSC: 53C20, 34A10

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1987-0869221-6

Article copyright:
© Copyright 1987
American Mathematical Society