Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The Szegő projection: Sobolev estimates in regular domains


Author: Harold P. Boas
Journal: Trans. Amer. Math. Soc. 300 (1987), 109-132
MSC: Primary 32F15; Secondary 32A25, 35N15
DOI: https://doi.org/10.1090/S0002-9947-1987-0871667-7
MathSciNet review: 871667
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The Szegö projection preserves global smoothness in weakly pseudoconvex domains that are regular in the sense of Diederich, Fornæss, and Catlin. It preserves local smoothness near boundary points of finite type.


References [Enhancements On Off] (What's this?)

  • [1] R. A. Adams, Sobolev spaces, Academic Press, New York, 1975. MR 0450957 (56:9247)
  • [2] S. R. Bell, Biholomorphic mappings and the $ \overline \partial $-problem, Ann. of Math. (2) 114 (1981), 103-113. MR 625347 (82j:32039)
  • [3] -, A duality theorem for harmonic functions, Michigan Math. J. 29 (1982), 123-128. MR 646379 (83m:31005)
  • [4] -, A representation theorem in strictly pseudoconvex domains, Illinois J. Math. 26 (1982), 19-26. MR 638551 (83c:32036)
  • [5] -, A Sobolev inequality for pluriharmonic functions, Proc. Amer. Math. Soc. 85 (1982), 350-352. MR 656100 (83i:32011)
  • [6] Steven R. Bell and Harold P. Boas, Regularity of the Bergman projection and duality of holomorphic function spaces, Math. Ann. 267 (1984), 473-478. MR 742893 (86a:32047)
  • [7] Steve Bell and David Catlin, Boundary regularity of proper holomorphic mappings, Duke Math. J. 49 (1982), 385-396. MR 659947 (84b:32037a)
  • [8] Harold P. Boas, Regularity of the Szegö projection in weakly pseudoconvex domains, Indiana Univ. Math. J. 34 (1985), 217-223. MR 773403 (86g:32040)
  • [9] -, Sobolev space projections in strictly pseudoconvex domains, Trans. Amer. Math. Soc. 288 (1985), 227-240. MR 773058 (86g:32041)
  • [10] L. Boutet de Monvel and J. Sjöstrand, Sur la singularité des noyaux de Bergman et de Szegö, Astérisque 34-35 (1976), 123-164. MR 0590106 (58:28684)
  • [11] David Catlin, Boundary invariants of pseudoconvex domains, Ann. of Math. (2) 120 (1984), 529-586. MR 769163 (86c:32019)
  • [12] -, Global regularity of the $ \overline \partial $-Neumann problem, Proc. Sympos. Pure Math., vol. 41, Amer. Math. Soc., Providence, R. I., 1984.
  • [13] -, Necessary conditions for subellipticity of the $ \overline \partial $-Neumann problem, Ann. of Math. (2) 117 (1983), 147-171. MR 683805 (84c:32021)
  • [14] John P. D'Angelo, Real hypersurfaces, orders of contact, and applications, Ann. of Math. (2) 115 (1982), 615-637. MR 657241 (84a:32027)
  • [15] Katharine P. Diaz, The Szegö kernel as a singular integral kernel on a family of weakly pseudoconvex domains, Doctoral dissertation, Princeton Univ., 1986. MR 906810 (89d:32009)
  • [16] Klas Diederich and John Erik Fornæss, Boundary regularity of proper holomorphic mappings, Invent. Math. 67 (1982), 363-384. MR 664111 (84b:32037b)
  • [17] -, Pseudoconvex domains: bounded strictly plurisubharmonic exhaustion functions, Invent. Math. 39 (1977), 129-141. MR 0437806 (55:10728)
  • [18] Robert E. Greene and Steven G. Krantz, Deformation of complex structures, estimates for the $ \overline \partial $ equation, and stability of the Bergman kernel, Advances in Math. 43 (1982), 1-86. MR 644667 (84b:32026)
  • [19] -, Stability properties of the Bergman kernel and curvature properties of bounded domains, Recent Developments in Several Complex Variables, Princeton Univ. Press, Princeton, N. J., 1981. MR 627758 (83d:32023)
  • [20] Norberto Kerzman, The Bergman kernel function. Differentiability at the boundary, Math. Ann. 195 (1972), 149-158. MR 0294694 (45:3762)
  • [21] N. Kerzman and E. M. Stein, The Szegö kernel in terms of Cauchy-Fantappiè kernels, Duke Math. J. 45 (1978), 197-224. MR 0508154 (58:22676)
  • [22] J. J. Kohn, Boundary regularity of $ \overline \partial $, Recent Developments in Several Complex Variables, Princeton Univ. Press, Princeton, N. J., 1981. MR 627761 (82j:32043)
  • [23] -, A survey of the $ \overline \partial $-Neumann problem, Proc. Sympos. Pure Math., vol. 41, Amer. Math. Soc., Providence, R. I., 1984.
  • [24] J. J. Kohn and L. Nirenberg, Non-coercive boundary value problems, Comm. Pure Appl. Math. 28 (1965), 443-492. MR 0181815 (31:6041)
  • [25] Gen Komatsu, Boundedness of the Bergman projector and Bell's duality theorem, Tôhoku Math. J. 36 (1984), 453-467. MR 756028 (85m:32018)
  • [26] J. L. Lions and E. Magenes, Non-homogeneous boundary value problems and applications, vol. I, Springer-Verlag, Berlin and New York, 1972. MR 0350177 (50:2670)
  • [27] E. Hopf, Über den funktionalen, insbesondere den analytischen Charakter der Lösungen elliptischer Differentialgleichungen zweiter Ordnung, Math. Z. 34 (1931), 194-233. MR 1545250
  • [28] A. Nagel, E. M. Stein and S. Wainger, Boundary behavior of functions holomorphic in domains of finite type, Proc. Nat. Acad. Sci. U. S. A. 78 (1981), 6596-6599. MR 634936 (82k:32027)
  • [29] D. H. Phong and E. M. Stein, Estimates for the Bergman and Szegö projections on strongly pseudo-convex domains, Duke Math. J. 44 (1977), 695-704. MR 0450623 (56:8916)
  • [30] I. Ramadanov, Sur une propriété de la fonction de Bergman, C. R. Acad. Bulgar. Sci. 20 (1967), 759-762. MR 0226042 (37:1632)
  • [31] R. Michael Range, A remark on bounded strictly plurisubharmonic exhaustion functions, Proc. Amer. Math. Soc. 81 (1981), 220-222. MR 593461 (82e:32030)
  • [32] Emil J. Straube, Exact regularity of Bergman, Szegö and Sobolev space projections in non-pseudoconvex domains, Math. Z. 192 (1986), 117-128. MR 835396 (87k:32045)
  • [33] -, Harmonic and analytic functions admitting a distribution boundary value, Ann. Scuola Norm. Sup. Pisa 11 (1984), 559-591. MR 808424 (87c:31006)
  • [34] Emil J. Straube, Orthogonal projections onto subspaces of the harmonic Bergman space, Pacific J. Math. 123 (1986), 465-476. MR 840855 (87j:46075)
  • [35] E. C. Titchmarsh, The theory of functions, 2nd ed., Oxford Univ. Press, London, 1939.
  • [36] J. J. Kohn, Estimates for $ {\overline \partial _b}$ on pseudo-convex $ CR$ manifolds, Pseudodifferential Operators and Applications, Proc. Sympos. Pure Math., vol. 43, Amer. Math. Soc., Providence, R. I., 1985, pp. 207-217. MR 812292 (87c:32025)
  • [37] J. J. Kohn, The range of the tangential Cauchy-Riemann operator, Duke Math. J. 53 (1986), 525-545. MR 850548 (87m:32041)
  • [38] E. Ligocka, The Sobolev spaces of harmonic functions, Studia Math. 84 (1986). MR 871847 (88b:46057)
  • [39] David Catlin, Subelliptic estimates for the $ \overline \partial $-Neumann problem on pseudoconvex domains, Ann. of Math. (to appear). MR 740870 (85j:32033)
  • [40] J. Schauder, Über lineare elliptische Differentialgleichungen zweiter Ordnung, Math. Z. 38 (1934), 257-282. MR 1545448

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 32F15, 32A25, 35N15

Retrieve articles in all journals with MSC: 32F15, 32A25, 35N15


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1987-0871667-7
Article copyright: © Copyright 1987 American Mathematical Society

American Mathematical Society