Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Quadratic geometry of numbers


Authors: Hans Peter Schlickewei and Wolfgang M. Schmidt
Journal: Trans. Amer. Math. Soc. 301 (1987), 679-690
MSC: Primary 11H55
DOI: https://doi.org/10.1090/S0002-9947-1987-0882710-3
MathSciNet review: 882710
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We give upper bounds for zeros of quadratic forms. For example we prove that for any nondegenerate quadratic form $ \mathfrak{F}({x_1}, \ldots ,\,{x_n})$ with rational integer coefficients which vanishes on a $ d$-dimensional rational subspace $ (d > 0)$ there exist sublattices $ {\Gamma _0},\,{\Gamma _1},\, \ldots \,,{\Gamma _{n - d}}$ of $ {\mathbf{Z}^n}$ of rank $ d$, on which $ \mathfrak{F}$ vanishes, with the following properties:

$\displaystyle {\text{rank}}({\Gamma _0} \cap {\Gamma _i}) = d - 1,\quad {\text{rank}}({\Gamma _0} \cup {\Gamma _1} \cup \cdots \cup {\Gamma _{n - d}}) = n$

and

$\displaystyle {(\det \,{\Gamma _0})^{n - d}}\det \,{\Gamma _1} \cdots \det \,{\Gamma _{n - d}} \ll {F^{{{(n - d)}^2}}}$

, where $ F$ is the maximum modulus of the coefficients of $ \mathfrak{F}$.

References [Enhancements On Off] (What's this?)

  • [1] B. J. Birch and H. Davenport, Quadratic equations in several variables, Proc. Cambridge Philos. Soc. 54 (1958), 135-138. MR 0097355 (20:3824)
  • [2] J. W. S. Cassels, Bounds for the least solutions of homogeneous quadratic equations, Proc. Cambridge Philos. Soc. 51 (1955), 262-264. MR 0069217 (16:1002c)
  • [3] -, Addendum to the paper: Bounds for the least solutions of homogeneous quadratic equations, Proc. Cambridge Philos. Soc. 52 (1956), 604. MR 0081306 (18:380c)
  • [4] H. Davenport, Homogeneous quadratic equations, Mathematika 18 (1971), 1-4. MR 0292760 (45:1842)
  • [5] H. P. Schlickewei, Kleine Nullstellen homogener quadratischer Gleichungen, Monatsh. Math. 100 (1985), 35-45. MR 807296 (87f:11019)
  • [6] R. Schulze-Pillot, Small linearly independent zeros of quadratic forms, Monatsh. Math. 95 (1983), 241-249. MR 712424 (85e:11044)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 11H55

Retrieve articles in all journals with MSC: 11H55


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1987-0882710-3
Article copyright: © Copyright 1987 American Mathematical Society

American Mathematical Society