Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The proximal normal formula in Banach space


Authors: J. M. Borwein and J. R. Giles
Journal: Trans. Amer. Math. Soc. 302 (1987), 371-381
MSC: Primary 49A52; Secondary 46B20, 46G05
DOI: https://doi.org/10.1090/S0002-9947-1987-0887515-5
MathSciNet review: 887515
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Approximation by proximal normals to the Clarke generalized subdifferential for a distance function generated by a nonempty closed set and the normal cone to the set generated by the proximal normals are important tools in nonsmooth analysis. We give simple general versions of such formulae in infinite dimensional Banach spaces which satisfy different geometrical conditions. Our first class, of spaces with uniformly Gâteaux differentiable norm includes the Hilbert space case and the formulae is attained through dense subsets. Our second class, of reflexive Kadec smooth spaces is the most general for which such formulae can be obtained for all nonempty closed sets in the space. Our technique also allows us to establish the existence of solutions for a class of optimization problems substantially extending similar work of Ekeland and Lebourg.

Resume. L'approximation par les normales proximales au sous-différentiel généralisé de Clarke pour une fonction de distance produit d'un ensemble non-vide fermé et le cône normal à l'ensemble produit des normales proximales sont objets d'importance pour l'analyse non-régulière. Nous donnons deux versions simples et générales de telles formules dans les espaces de Banach de dimensions infinies. Premièrement, nous examinons la classe des espaces avec norme uniformément Gâteaux-dérivable qui comprend les espaces de Hilbert. Deuxièmement, nous examinons la classe espaces réflexifs Kadec et lisses. Enfin, notre méthode produit l'existence des solutions pour une classe de problèmes à l'optimisation.


References [Enhancements On Off] (What's this?)

  • [1] E. Asplund, Chebychev sets in Hilbert space, Trans. Amer. Math. Soc. 444 (1969), 235-240. MR 0253023 (40:6238)
  • [2] J. M. Borwein, Weak local supportability and applications to approximation, Pacific J. Math. 82 (1979), 323-338. MR 551692 (81h:46016)
  • [3] J. M. Borwein, S. P. Fitzpatrick and J. R. Giles, The differentiability of real functions on normed linear spaces using generalized subgradients, J. Math. Anal. Appl. (to appear). MR 917385 (89b:58027)
  • [4] J. M. Borwein and H. M. Strojwas, Proximal analysis and boundaries of closed sets in Banach space. I: Theory, J. Canad. Math. Soc. 38 (1986), 431-452. MR 833578 (87h:90258)
  • [5] -, Proximal analysis and boundaries of closed sets in Banach space. II: Applications, J. Canad. Math. Soc. (to appear).
  • [6] F. H. Clarke, Optimization and nonsmooth analysis, Canad. Math. Soc. Ser. Monographs and Advanced Texts, Wiley, New York, 1983. MR 709590 (85m:49002)
  • [7] M. Edelstein, On nearest points of sets in uniformly convex Banach spaces, J. London Math. Soc. 43 (1968), 375-377. MR 0226364 (37:1954)
  • [8] I. Ekeland and G. Lebourg, Generic Fréchet-differentiability and perturbed optimization problems in Banach spaces, Trans. Amer. Math. Soc. 224 (1976), 193-216. MR 0431253 (55:4254)
  • [9] S. V. Konjagin, On approximation properties of closed sets in Banach spaces and the characterization of strongly convex spaces, Soviet Math. Dokl. 21 (1980), 418-422. MR 565493 (81b:46022)
  • [10] K. S. Lau, Almost Chebychev subsets in reflexive Banach spaces, Indiana Univ. Math. J. 2 (1978), 791-795. MR 0510772 (58:23286)
  • [11] P. D. Loewen, The proximal normal formula in Hilbert space, Nonlinear Anal. (to appear). MR 907818 (89b:49017)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 49A52, 46B20, 46G05

Retrieve articles in all journals with MSC: 49A52, 46B20, 46G05


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1987-0887515-5
Article copyright: © Copyright 1987 American Mathematical Society

American Mathematical Society