Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Strong multiplicity theorems for $ {\rm GL}(n)$


Author: George T. Gilbert
Journal: Trans. Amer. Math. Soc. 302 (1987), 561-576
MSC: Primary 11F70; Secondary 22E55
DOI: https://doi.org/10.1090/S0002-9947-1987-0891635-9
MathSciNet review: 891635
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \pi = \otimes {\pi _\upsilon }$ be a cuspidal automorphic representation of $ GL(n,{F_A})$, where $ {F_A}$ denotes the adeles of a number field $ F$. Let $ E$ be a Galois extension of $ F$ and let $ \{ g\} $ denote a conjugacy class of the Galois group. The author considers those cuspidal automorphic representations which have local components $ {\pi _\upsilon }$ whenever the Frobenius of the prime $ \upsilon$ is $ \{ g\} $, showing that such representations are often easily described and finite in number. This generalizes a result of Moreno [Bull. Amer. Math. Soc. 11 (1984), pp. 180-182].


References [Enhancements On Off] (What's this?)

  • [1] A. Borel and H. Jacquet, Automorphic forms and automorphic representations, Proc. Sympos. Pure Math., vol. 33, Part 1, Amer. Math. Soc., Providence, R.I., 1979, pp. 189-192. MR 546598 (81m:10055)
  • [2] K. Chandrasekharan Arithmetical functions, Springer-Verlag, Berlin, 1970. MR 0277490 (43:3223)
  • [3] K. Chandrasekharan and R. Narasimhan Functional equations with multiple gamma factors and the average order of arithmetical functions, Ann. of Math. 76 (1962), 93-136. MR 0140491 (25:3911)
  • [4] S. Friedberg, A global approach to the Rankin-Selberg convolution for $ GL(3,Z)$, Preprint, 1984. MR 871670 (88f:11052)
  • [5] S. Gelbart and H. Jacquet, A relation between automorphic representations of $ GL(2)$ and $ G{\text{L}}(3)$, Ann. Sci. École Norm. Sup. 11 (1978), 471-542. MR 533066 (81e:10025)
  • [6] P. Gerardin and J.-P. Labesse, The solution of a base change problem for $ GL(2)$ (following Langlands, Saito, Shintani), Proc. Sympos. Pure Math., vol. 33, Part 2, Amer. Math. Soc., Providence, R.I., 1979, pp. 115-134. MR 546613 (82e:10047)
  • [7] R. Godement and H. Jacquet, Zeta functions of simple algebras, Lecture Notes in Math., vol. 260, Springer-Verlag, Berlin, 1972. MR 0342495 (49:7241)
  • [8] M. Hall, Jr., The theory of groups, Macmillan, New York, 1959. MR 0103215 (21:1996)
  • [9] H. Jacquet, Automorphic forms on $ GL(2)$. II, Lecture Notes in Math., vol. 278, Springer-Verlag, Berlin, 1972. MR 0562503 (58:27778)
  • [10] H. Jacquet and R. Langlands, Automorphic forms on $ GL(2)$, Lecture Notes in Math., vol. 114, Springer-Verlag, Berlin, 1970. MR 0401654 (53:5481)
  • [11] H. Jacquet, I. Piatetski-Shapiro, and J. Shalika, Relevement cubique non normal, C.R. Acad. Sci. Paris Ser. I Math. 292 (1981), 567-571. MR 615450 (82i:10035)
  • [12] -, Rankin-Selberg convolutions, Amer. J. Math. 105 (1983), 367-464. MR 701565 (85g:11044)
  • [13] H. Jacquet and J. Shalika, On Euler products and the classification of automorphic representations. I, II. Amer. J. Math. 103 (1981), 499-558, 777-815. MR 618323 (82m:10050a)
  • [14] J.-P. Labesse and R. Langlands, $ L$-indistinguishability for $ SL(2)$, Canad. J. Math. 31 (1979), 726-785. MR 540902 (81b:22017)
  • [15] S. Lang, Algebraic number theory, Addison-Wesley, Reading, Mass. 1970. MR 0282947 (44:181)
  • [16] R. Langlands, Base change for $ GL(2)$, Princeton Univ. Press, Princeton, N.J., 1980. MR 574808 (82a:10032)
  • [17] C. Moreno, An analytic proof of the multiplicity one theorem, Preprint.
  • [18] -, The strong multiplicity one theorem for $ G{L_n}$, Bull. Amer. Math. Soc. 11 (1984), 180-182. MR 741735 (85j:11058)
  • [19] I. Piatetski-Shapiro, Classical and adelic automorphic forms, Proc. Sympos. Pure Math., vol. 33, Part 1, Amer. Math. Soc., Providence, R.I., 1979, pp. 185-188. MR 546597 (81c:10033)
  • [20] B. Puttaswamaiah, $ M$-groups. Between nilpotent and solvable, Polygonal Publishing House, Passaic, N.J., 1982. MR 655785 (84k:20002)
  • [21] J.-P. Serre, Linear representations of finite groups, Springer-Verlag, New York, 1977. MR 0450380 (56:8675)
  • [22] F. Shahidi, On certain $ L$-functions, Amer. J. Math. 103 (1981), 297-355. MR 610479 (82i:10030)
  • [23] G. Shimura, On the holomorphy of certain Dirichlet series, Proc. London Math. Soc. 31 (1975). 79-98. MR 0382176 (52:3064)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 11F70, 22E55

Retrieve articles in all journals with MSC: 11F70, 22E55


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1987-0891635-9
Article copyright: © Copyright 1987 American Mathematical Society

American Mathematical Society