Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The asymptotic behavior of the solutions of degenerate parabolic equations


Authors: Catherine Bandle, M. A. Pozio and Alberto Tesei
Journal: Trans. Amer. Math. Soc. 303 (1987), 487-501
MSC: Primary 35B40; Secondary 35K65
DOI: https://doi.org/10.1090/S0002-9947-1987-0902780-3
MathSciNet review: 902780
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Existence of stationary states is established by means of the method of upper and lower solutions. The structure of the solution set is discussed and a uniqueness property for certain classes is proved by a generalized maximum principle. It is then shown that all solutions of the parabolic equation converge to a stationary state.


References [Enhancements On Off] (What's this?)

  • [ACP] D. G. Aronson, M. Crandall and L. A. Peletier, Stabilization of solutions of a degenerate diffusion problem, Nonlinear Anal. 6 (1982), 1001-1022. MR 678053 (84j:35099)
  • [DB] E. Di Benedetto, Continuity of weak solutions to a general porous medium equation, Indiana Univ. Math. J. 32 (1983), 83-118. MR 684758 (85c:35010)
  • [DH] J. I. Diaz and J. Hernàndez, On the existence of a free boundary for a class of reaction-diffusion systems, SIAM J. Math. Anal. 15 (1984), 670-685. MR 747428 (85k:35087)
  • [L] T. Laetsch, Uniqueness for sublinear boundary value problems, J. Differential Equations 13 (1973), 13-23. MR 0369899 (51:6128)
  • [GM] M. E. Gurtin and R. C. MacCamy, On the diffusion of biological populations, Math. Biosci. 33 (1977), 35-49. MR 0682594 (58:33147)
  • [dMST] P. De Mottoni, A. Schiaffino and A. Tesei, Attractivity properties of nonnegative solutions for a class of nonlinear degenerate parabolic problems, Ann. Mat. Pura Appl. 136 (1984), 35-48. MR 765914 (87b:35015)
  • [PeT] L. A. Peletier and A. Tesei, Global bifurcation and attractivity of stationary solutions of a degenerate diffusion equation, Adv. in Appl. Math. 7 (1986), 435-454. MR 866703 (88a:35126)
  • [PT] M. A. Pozio and A. Tesei, Support properties of solution for a class of degenerate parabolic problems, Comm. Partial Differential Equations 12 (1987), 47-75. MR 869102 (88d:35110)
  • [N] T. Namba, Density-dependent dispersal and spatial distribution of a population, J. Theor. Biol. 86 (1980), 351-363. MR 585955 (81i:92024)
  • [S] P. Sacks, The initial and boundary value problem for a class of degenerate parabolic equations, Comm. Partial Differential Equations 8 (1983), 693-733. MR 700733 (85h:35128)
  • [Sch] M. Schatzman, Stationary solutions and asymptotic behaviour of a quasilinear degenerate parabolic equation, Indiana Univ. Math. J. 33 (1984), 1-30. MR 726104 (85i:35081)
  • [Sp] J. Spruck, Uniqueness in a diffusion model of population biology, Comm. Partial Differential Equations 8 (1983), 1605-1620. MR 729195 (85h:35086)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 35B40, 35K65

Retrieve articles in all journals with MSC: 35B40, 35K65


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1987-0902780-3
Article copyright: © Copyright 1987 American Mathematical Society

American Mathematical Society