Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

   
Remote Access
Green Open Access
Transactions of the American Mathematical Society
Transactions of the American Mathematical Society
ISSN 1088-6850(online) ISSN 0002-9947(print)

 

A finiteness theorem in the Galois cohomology of algebraic number fields


Author: Wayne Raskind
Journal: Trans. Amer. Math. Soc. 303 (1987), 743-749
MSC: Primary 11R34; Secondary 14C15, 19E08, 19E15
MathSciNet review: 902795
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this note we show that if $ k$ is an algebraic number field with algebraic closure $ \overline k $ and $ M$ is a finitely generated, free $ {{\mathbf{Z}}_l}$-module with continuous $ \operatorname{Gal} (\overline k /k)$-action, then the continuous Galois cohomology group $ {H^1}(k,\,M)$ is a finitely generated $ {{\mathbf{Z}}_l}$-module under certain conditions on $ M$ (see Theorem 1 below). Also, we present a simpler construction of a mapping due to S. Bloch which relates torsion algebraic cycles and étale cohomology.


References [Enhancements On Off] (What's this?)

  • [1] S. Bloch and A. Ogus, Gersten's conjecture and the homology of schemes, Ann. Sci. École Norm. Sup. 7 (1974), 181-202. MR 0412191 (54:318)
  • [2] S. Bloch, Torsion algebraic cycles and a theorem of Roitman, Compositio Math. 39 (1979), 107-127. MR 539002 (80k:14012)
  • [3] -, Algebraic cycles and values of $ L$-functions. I, J. Reine Angew. Math. 350 (1984), 94-108. MR 743535 (85i:11052)
  • [4] J.-L. Colliot-Thélène, J.-J. Sansuc, et C. Soulé, Torsion dans le groupe de Chow de codimension deux, Duke Math. J. 50 (1983), 763-801. MR 714830 (85d:14010)
  • [5] J.-L. Colliot-Thélène and W. Raskind, $ {K_2}$-cohomology and the second Chow group, Math. Ann. 270 (1985), 165-199. MR 771978 (86m:14005)
  • [6] S. Lang, Fundamentals of diophantine geometry, Springer-Verlag, Berlin and New York, 1983. MR 715605 (85j:11005)
  • [7] W. Raskind, Le théorème de Mordell-Weil faible pour $ {H^0}(X,\,{K_2})/{K_2}k$, C. R. Acad. Sci. Paris (Sér. I) 299 (1984), 241-244. MR 762730 (86a:14017)
  • [8] P. Schneider, Über gewisse Galois cohomologiegruppen, Math. Z. 168 (1979), 181-205. MR 544704 (81i:12010)
  • [9] -, Thesis, Regensburg, 1980.
  • [10] J.-P. Serre, Cohomologie galoisienne, Lecture Notes in Math., vol. 5, Springer-Verlag, Berlin and New York, 1964.
  • [11] C. Soulé, On higher $ p$-adic regulators, Algebraic $ K$-theory (Evanston, 1980), Lecture Notes in Math., vol. 854, Springer-Verlag, Berlin and New York, 1981, pp. 372-401. MR 618313 (83b:12013)
  • [12] A. A. Suslin, Torsion in $ {K_2}$ of fields, LOMI preprint, Leningrad, 1982. MR 689382 (84f:18023)
  • [13] J. Tate, Relations between $ {K_2}$ and Galois cohomology, Invent. Math. 36 (1976), 257-274. MR 0429837 (55:2847)
  • [14] SGA $ 4\tfrac{1} {2}$ par P. Deligne, avec la collaboration de J. F. Boutot, A. Grothendieck, L. Illusie et J.-L. Verdier, Lecture Notes in Math., vol. 569, Springer-Verlag, Berlin and New York, 1977.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 11R34, 14C15, 19E08, 19E15

Retrieve articles in all journals with MSC: 11R34, 14C15, 19E08, 19E15


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9947-1987-0902795-5
PII: S 0002-9947(1987)0902795-5
Article copyright: © Copyright 1987 American Mathematical Society