Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

   
Mobile Device Pairing
Green Open Access
Transactions of the American Mathematical Society
Transactions of the American Mathematical Society
ISSN 1088-6850(online) ISSN 0002-9947(print)

 

Rings of differential operators on invariant rings of tori


Author: Ian M. Musson
Journal: Trans. Amer. Math. Soc. 303 (1987), 805-827
MSC: Primary 32C38; Secondary 14L30, 16A45, 16A62, 58G99
MathSciNet review: 902799
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ k$ be an algebraically closed field of characteristic zero and $ G$ a torus acting diagonally on $ {k^s}$. For a subset $ \beta $ of $ {\mathbf{s}} = \{ 1,\,2, \ldots ,\,s\} $, set $ {U_\beta } = \{ u \in {k^s}\vert{u_j} \ne 0\;{\text{if}}\;j \in \beta \} $. Then $ G$ acts on $ \mathcal{O}({U_\beta })$, the ring of regular functions on $ {U_\beta }$, and we study the ring $ D(\mathcal{O}{({U_\beta })^G})$ of all differential operators on the invariant ring.

More generally suppose that $ \Delta $ is a set of subsets of s, such that each invariant ring $ \mathcal{O}{({U_\beta })^G}$, $ \beta \in \Delta $, has the same quotient field. We prove that $ { \cap _{\beta \in \Delta }}D(\mathcal{O}{({U_\beta })^G})$ is Noetherian and finitely generated as a $ k$-algebra.

Now $ G$ acts on each $ D(\mathcal{O}({U_\beta }))$ and there is a natural map

$\displaystyle \theta :\bigcap\limits_{\beta \in \Delta } {D{{(\mathcal{O}({U_\b... ..._{\beta \in \Delta } {D(\mathcal{O}{{({U_\beta })}^G}) = D({Y_\Delta } / G)} } $

obtained by restriction of the differential operators. We find necessary and sufficient conditions for $ \theta $ to be surjective and describe the kernel of $ \theta $.

The algebras $ { \cap _{\beta \in \Delta }}D{(\mathcal{O}({U_\beta }))^G}$ and $ { \cap _{\beta \in \Delta }}D(\mathcal{O}{({U_\beta })^G})$ carry a natural filtration given by the order of the differential operators. We show that the associated graded rings are finitely generated commutative algebras and are Gorensetin rings. We also determine the centers of $ { \cap _{\beta \in \Delta }}D{(\mathcal{O}({U_\beta }))^G}$ and $ { \cap _{\beta \in \Delta }}D(\mathcal{O}{({U_\beta })^G})$.


References [Enhancements On Off] (What's this?)

  • [BB] W. Borho and J.-L. Brylinski, Differential operators on homogeneous spaces. I, Invent. Math. 69 (1982), 437-476. MR 679767 (84b:17007)
  • [B] A. Brondsted, An introduction to convex polytopes, Graduate Texts in Math., no. 90, Springer-Verlag, Berlin, Heidelberg and New York, 1982. MR 683612 (84d:52009)
  • [Ho] M. Hochster, Rings of invariants of tori, Cohen-Macaulay rings generated by monomials, and polytopes, Ann. of Math. (2) 96 (1972), 318-337. MR 0304376 (46:3511)
  • [Hu] J. E. Humphreys, Linear algebraic groups, Graduate Texts in Math., no. 21, Springer-Verlag, Berlin, Heidelberg, and New York, 1975. MR 0396773 (53:633)
  • [Ka] J. M. Kantor, Formes et opérateurs différentiels sur les espaces analytiques complexes, Bull. Soc. Math. France 53 (1977), 5-80. MR 0486612 (58:6332)
  • [K] I. Kaplansky, Commutative rings, Univ. of Chicago Press, Chicago and London, 1974. MR 0345945 (49:10674)
  • [Ke] G. Kempf et al., Toroidal embeddings. I, Lecture Notes in Math., no. 339, Springer-Verlag, Berlin, Heidelberg, and New York, 1973. MR 0335518 (49:299)
  • [KL] G. R. Krause and T. H. Lenagan, Growth of algebras and Gelfand-Kirillov dimension, Research Notes in Math., No. 116, Pitman, Boston. MR 1721834 (2000j:16035)
  • [L1] T. Levasseur, Anneaux d'opérateurs différentiels, Séminaire d'Algèbre Paul Dubreil et Marie-Paule Malliavin, Lecture Notes in Math., no. 867, Springer-Verlag, Berlin, Heidelberg, and New York, 1981, pp. 157-173. MR 633520 (84j:32009)
  • [L2] -, Complexe bidualisant en algèbre non-commutative, Séminaire d'Algèbre Paul Dubreil et Marie-Paule Malliavin, Lecture Notes in Math., no. 1146, Springer-Verlag. Berlin, Heidelberg, and New York, 1985, pp. 397-415. MR 873088 (88f:16031)
  • [M] I. M. Musson, Actions of tori on Weyl algebras, Comm. Algebra (to appear). MR 921946 (88k:17013)
  • [S] R. P. Stanley, Hilbert functions of graded algebras, Adv. in Math. 28 (1978), 57-83. MR 0485835 (58:5637)
  • [V] J. P. Vigué, Opérateurs différentiels sur les espaces analytiques, Invent. Math. 20 (1973), 313-336. MR 0324061 (48:2413)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 32C38, 14L30, 16A45, 16A62, 58G99

Retrieve articles in all journals with MSC: 32C38, 14L30, 16A45, 16A62, 58G99


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9947-1987-0902799-2
PII: S 0002-9947(1987)0902799-2
Article copyright: © Copyright 1987 American Mathematical Society