Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

   
Mobile Device Pairing
Green Open Access
Transactions of the American Mathematical Society
Transactions of the American Mathematical Society
ISSN 1088-6850(online) ISSN 0002-9947(print)

 

Taming wild extensions with Hopf algebras


Author: Lindsay N. Childs
Journal: Trans. Amer. Math. Soc. 304 (1987), 111-140
MSC: Primary 11R33; Secondary 16A24
MathSciNet review: 906809
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ K \subset L$ be a Galois extension of number fields with abelian Galois group $ G$ and rings of integers $ R \subset S$, and let $ \mathcal{A}$ be the order of $ S$ in $ KG$. If $ \mathcal{A}$ is a Hopf $ R$-algebra with operations induced from $ KG$, then $ S$ is locally isomorphic to $ \mathcal{A}$ as $ \mathcal{A}$-module. Criteria are found for $ \mathcal{A}$ to be a Hopf algebra when $ K = {\mathbf{Q}}$ or when $ L/K$ is a Kummer extension of prime degree. In the latter case we also obtain a complete classification of orders over $ R$ in $ L$ which are tame or Galois $ H$-extensions, $ H$ a Hopf order in $ KG$, using a generalization of the discriminant.


References [Enhancements On Off] (What's this?)

  • [1] A.-M. Bergé. Arithmétique d'une extension Galoisienne a groupe d'inertie cyclique, Ann. Inst. Fourier (Grenoble) 28 (1978), 17-44. MR 513880 (80a:12012)
  • [2] F. Bertrandias, Decomposition du Galois-module des entiers d'une extension cyclique de degre premier d'un corps de nombres ou d'un corps local, Ann. Inst. Fourier (Grenoble) 29 (1979), 33-48. MR 526776 (80e:12015)
  • [3] F. Bertrandias and M. J. Ferton, Sur l'anneau des entiers d'une extension cyclique de degre premier d'un corps local, C. R. Acad. Sci. Paris A 274 (1972), 1330-1333. MR 0296047 (45:5108)
  • [4] F. Bertrandias, J.-P. Bertrandias and M. J. Ferton, Sur l'anneau des entiers d'une extension cyclique de degre premier d'un corps local, C. R. Acad. Sci. Paris A 274 (1972), 1388-1391.
  • [5] N. Bourbaki, Algèbre commutative, Chapitre II, Hermann, Paris, 1961.
  • [6] S. U. Chase, D. K. Harrison and A. Rosenberg, Galois theory and Galois cohomology of commutative rings, Mem. Amer. Math. Soc. No. 52, 1965, pp. 15-33. MR 0195922 (33:4118)
  • [7] S. U. Chase and M. E. Sweedler, Hopf algebras and Galois theory, Lecture Notes in Math., vol. 97 Springer, 1969. MR 0260724 (41:5348)
  • [8] L. N. Childs, Representing classes in the Brauer group of quadratic number rings as smash products, Pacific J. Math. (to appear). MR 909029 (88j:16007)
  • [9] L. N. Childs and S. Hurley, Tameness and local normal bases for objects of finite Hopf algebras, Trans. Amer. Math. Soc. 298 (1986), 763-778. MR 860392 (87m:13005)
  • [10] F. DeMeyer and E. Ingraham, Separable Algebras Over Commutative Rings, Lecture Notes in Math., vol. 181, Springer, 1971. MR 0280479 (43:6199)
  • [11] A. Frohlich, Local fields, Algebraic Number Theory, (J. W. S. Cassels and A. Frohlich, eds.), Thompson, Washington, D. C., 1967. MR 0236145 (38:4443)
  • [12] -, The module structure of Kummer extensions over Dedekind domains, J. Reine Angew. Math. 209(1962), 39-53. MR 0160777 (28:3988)
  • [13] S. Hurley, Tame and Galois Hopf algebras with normal bases, Thesis, SUNY at Albany, 1984.
  • [14] -, Galois objects with normal bases for free Hopf algebras of prime degree, J. Algebra (to appear). MR 902954 (88k:13003)
  • [15] H. Jacobinski, Über die Hauptordnung eines Korpers als Gruppenmodul, J. Reine Angew. Math. 213 (1964), 151-164. MR 0163901 (29:1200)
  • [16] R. Larson and M. Sweedler, An associative orthogonal bilinear form for Hopf algebra, Amer. J. Math. 91 (1969), 75-94. MR 0240169 (39:1523)
  • [17] H. W. Leopoldt, Über die Hauptordnung der ganzen Elementen eines abelschen Zahlkorpers, J. Reine Angew. Math. 201 (1959), 119-149. MR 0108479 (21:7195)
  • [18] T. Ligon, Galois-Theorie in monoidalen Kategorien, Algebra Ber. 35 (1978).
  • [19] B. Pareigis, When Hopf algebras are Frobenius algebras, J. Algebra 18 (1971), 588-596. MR 0280522 (43:6242)
  • [20] P. Ribenboim, Algebraic numbers, Wiley-Interscience, New York, 1972. MR 0340212 (49:4968)
  • [21] J.-P. Serre, Corps locaux, Hermann, Paris, 1962. MR 0354618 (50:7096)
  • [22] M. E. Sweedler, Hopf algebras, Benjamin, New York, 1969. MR 0252485 (40:5705)
  • [23] J. Tate and F. Oort, Group schemes of prime order, Ann. Sci. École Norm. Sup. (4) 3 (1970), 1-21. MR 0265368 (42:278)
  • [24] M. Taylor, Relative Galois module structure of rings of integers and elliptic functions. II, Ann. of Math. 121 (1985), 519-535. MR 794372 (87e:11130a)
  • [25] H. Wada, On cubic Galois extensions of $ Q(\sqrt { - 3} )$, Proc. Japan Acad. 46 (1970), 397-400. MR 0366867 (51:3113)
  • [26] L. Childs and A. Magid, The Picard invariant of a principal homogeneous space, J. Pure Appl. Algebra 4 (1974), 273-286. MR 0340266 (49:5021)
  • [27] C. Greither and B. Pareigis, Hopf Galois theory for separable field extensions, J. Algebra 106 (1987), 239-258. MR 878476 (88i:12006)
  • [28] M. Taylor, Hopf structure and the Kummer theory of formal groups, J. Reine Angew. Math. 375 / 376 (1987), 1-11. MR 882287 (88d:11119)
  • [29] G. Bergman, Everybody knows what a Hopf algebra is, Contemp. Math., vol. 43, Amer. Math. Soc., Providence, R. I., 1985, pp. 25-48. MR 810641 (87e:16024)
  • [30] R. G. Larson, Group rings over Dedekind domains, J. Algebra 5 (1967), 358-361. MR 0209368 (35:266)
  • [31] L. N. Childs, Azumaya algebras which are not smash products, Rocky Mountain J. Math. (to appear). MR 1057976 (91d:16024)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 11R33, 16A24

Retrieve articles in all journals with MSC: 11R33, 16A24


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9947-1987-0906809-8
PII: S 0002-9947(1987)0906809-8
Article copyright: © Copyright 1987 American Mathematical Society