Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



The Morava $ K$-theories of some classifying spaces

Author: Nicholas J. Kuhn
Journal: Trans. Amer. Math. Soc. 304 (1987), 193-205
MSC: Primary 55N22; Secondary 19L99
MathSciNet review: 906812
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ P$ be a finite abelian $ p$-group with classifying space $ BP$. We compute, in representation theoretic terms, the Morava $ K$-theories of the stable wedge summands of $ BP$. In particular, we obtain a simple, and purely group theoretic, description of the rank of $ K{(s)^{\ast}}(BG)$ for any finite group $ G$ with an abelian $ p$-Sylow subgroup. A minimal amount of topology quickly reduces the problem to an algebraic one of analyzing truncated polynomial algebras as modular representations of the semigroup $ {M_n}({\mathbf{Z}} / p)$.

References [Enhancements On Off] (What's this?)

  • [1] J. F. Adams, J. H. Gunawardena and H. Miller, The Segal conjecture for elementary abelian $ p$-groups, Topology 24 (1985), 435-460. MR 816524 (87m:55026)
  • [2] M. F. Atiyah, Characters and cohomology of finite groups, Publ. Math. Inst. Hautes Etudes Sci. 9 (1961), 247-288. MR 0148722 (26:6228)
  • [3] D. Carlisle, P. Eccles, S. Hilditch, N. Ray, L. Schwartz, G. Walker and R. Wood, Modular representations of $ \operatorname{GL} (n,\,p)$, splitting $ \sum ({\mathbf{C}}{P^\infty } \times \cdots \times {\mathbf{C}}{P^\infty })$, and the $ \beta $-family as framed hypersurfaces, Math. Z. 189 (1985), 239-261. MR 779220 (86i:55021)
  • [4] D. J. Glover, A study of certain modular representations, J. Algebra 51 (1978), 425-475. MR 0476841 (57:16392)
  • [5] J. C. Harris and N. J. Kuhn, Stable decompositions of classifying spaces of finite abelian $ p$-groups, Math. Proc. Cambridge Philos. Soc. (submitted).
  • [6] M. J. Hopkins and J. H. Smith, Nilpotence and stable homotopy theory. II (in preparation).
  • [7] N. J. Kuhn, The mod p $ K$-theory of classifying spaces of finite groups, J. Pure Appl. Algebra 44 (1987), 269-271. MR 885110 (88g:55008)
  • [8] N. J. Kuhn, The rigidity of $ L(n)$, Proc. Topology year at Univ. of Washington (to appear).
  • [9] N. J. Kuhn and S. B. Priddy, The transfer and Whitehead's conjecture, Math. Proc. Cambridge Philos. Soc. 98 (1985), 459-480. MR 803606 (87g:55030)
  • [10] S. A. Mitchell, Finite complexes with $ A(n)$-free cohomology, Topology 24 (1985), 227-248. MR 793186 (86k:55007)
  • [11] D. G. Quillen, On the associated graded ring of a group ring, J. Algebra 10 (1968), 411-418. MR 0231919 (38:245)
  • [12] D. C. Ravenel, Morava $ K$-theories and finite groups, Symposium on Algebraic Topology in Honor of José Adem, Contemp. Math., vol. 12, Amer. Math. Soc., Providence, R. I., 1982, pp. 289-292. MR 676336 (83m:55009)
  • [13] D. C. Ravenel and W. S. Wilson, The Morava $ K$-theories of Eilenberg-Mac Lane spaces and the Conner-Floyd conjecture, Amer. J. Math. 102 (1980), 691-748. MR 584466 (81i:55005)
  • [14] P. J. Welcher, Symmetric fiber spectra and $ K(n)$-homology acyclicity, Indiana J. Math. 39 (1981), 801-812. MR 632853 (82m:55012)
  • [15] N. J. Kuhn, Morova $ K$-theories and infinite loop spaces, Proc. 1986 Arcata Topology Conference (to appear).

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 55N22, 19L99

Retrieve articles in all journals with MSC: 55N22, 19L99

Additional Information

Article copyright: © Copyright 1987 American Mathematical Society

American Mathematical Society