Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Decompositions of Banach lattices into direct sums


Authors: P. G. Casazza, N. J. Kalton and L. Tzafriri
Journal: Trans. Amer. Math. Soc. 304 (1987), 771-800
MSC: Primary 46B30
DOI: https://doi.org/10.1090/S0002-9947-1987-0911095-9
MathSciNet review: 911095
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We consider the problem of decomposing a Banach lattice $ Z$ as a direct sum $ Z = X \oplus Y$ where $ X$ and $ Y$ are complemented subspaces satisfying a condition of incomparability (e.g. every operator from $ Y$ to $ X$ is strictly singular). We treat both the atomic and nonatomic cases. In particular we answer a question of Wojtaszczyk by showing that $ {L_1} \oplus {L_2}$ has unique structure as a nonatomic Banach lattice.


References [Enhancements On Off] (What's this?)

  • [1] D. J. Aldous and D. H. Fremlin, Colacunary sequences in $ L$-spaces, Studia Math. 71 (1982), 297-304. MR 667318 (83j:46025)
  • [2] J. Bourgain, P. G. Casazza, J. Lindenstrauss and L. Tzafriri, Banach spaces with a unique unconditional basis, up to permutation, Mem. Amer. Math. Soc. No. 322 (1985). MR 782647 (86i:46014)
  • [3] I. S. Edelstein and P. Wojtaszczyk, On projections and unconditional bases in direct sums of Banach spaces, Studia Math. 56 (1976), 263-276. MR 0425585 (54:13539)
  • [4] P. Enflo and T. Starbird, Subspaces of $ {L_1}$ containing $ {L_1}$, Studia Math. 65 (1979), 203-225. MR 557491 (81j:46034)
  • [5] H. Fakhoury, Representations d'operateurs a valeurs dans $ {L_1}(X,\,\Sigma ,\,\mu )$, Math. Ann. 240 (1979), 203-212. MR 526843 (80e:47027)
  • [6] T. Figiel, W. B. Johnson and L. Tzafriri, On Banach lattices and spaces having local unconditional structure with applications to Lorentz function spaces, J. Approx. Theory 13 (1975), 395-412. MR 0367624 (51:3866)
  • [7] N. Ghoussoub and H. P. Rosenthal, Martingales, $ {G_\delta }$-embeddings and quotients of $ {L_1}$, Math. Ann. 264 (1983), 321-332. MR 714107 (85e:46013)
  • [8] Y. Gordon, D. R. Lewis and J. R. Retherford, Banach ideals of operators with applications, J. Funct. Anal. 14 (1973), 85-129. MR 0380488 (52:1388)
  • [9] W. B. Johnson, B. Maurey, G. Schechtman and L. Tzafriri, Symmetric structures in Banach spaces, Mem. Amer. Math. Soc. No. 217 (1979). MR 527010 (82j:46025)
  • [10] N. J. Kalton, The endomorphisms of $ {L_p}$, $ 0 \leqslant p \leqslant 1$, Indiana Univ. Math. J. 27 (1978), 353-381. MR 0470670 (57:10416)
  • [11] -, Embedding $ {L_1}$ in a Banach lattice, Israel J. Math. 32 (1979), 209-220. MR 531264 (81f:46027)
  • [12] J. L. Krivine, Theoremes de factorisation dans les espaces reticules, Sem. Maurey-Schwartz, Ecole Polyt., Paris, Expose 22-23, 1973-74. MR 0440334 (55:13209)
  • [13] D. R. Lewis and C. Stegall, Banach spaces whose duals are isomorphic to $ {l_1}(\Gamma )$, J. Funct. Anal. 12 (1973), 177-187. MR 0342987 (49:7731)
  • [14] J. Lindenstrauss and A. Pelczynski, Absolutely summing operators in $ {\mathcal{L}_p}$-spaces and their applications, Studia Math. 29 (1968), 275-326. MR 0231188 (37:6743)
  • [15] J. Lindenstrauss and L. Tzafriri, Classical Banach spaces. I: Sequence spaces, Springer-Verlag, Berlin and New York, 1977. MR 0500056 (58:17766)
  • [16] -, Classical Banach spaces. II: Function spaces, Springer-Verlag, Berlin and New York, 1979. MR 540367 (81c:46001)
  • [17] H. P. Lotz and H. P. Rosenthal, Embeddings of $ C(\Delta )$ and $ {L^1}[0,\,1]$ in Banach lattices, Israel J. Math. 31 (1978), 169-179. MR 516253 (80g:46023)
  • [18] B. Maurey, Type et cotype dans les espaces munis des structures locales inconditionnelles, Sem. Maurey-Schwartz, Ecole Polyt., Paris, Expose 24-25, 1973-74. MR 0399796 (53:3638)
  • [19] B. Maurey, Theoremes de factorisation pour les operateurs a valeurs dans un espace $ {L^p}$, Asterisque, Soc. Math. France 11 (1974). MR 0344931 (49:9670)
  • [20] G. Pisier, Une propriete de stabilite de la classe des espaces ne contenant pas $ {l^1}$, C. R. Acad. Sci. Paris 286 (1978), 747-749. MR 0511805 (58:23520)
  • [21] V. A. Rodin and E. M. Semyonov, Rademacher series in symmetric spaces, Analyse Math. 1 (1975), 207-222. MR 0388068 (52:8905)
  • [22] H. P. Rosenthal, On totally incomparable Banach spaces, J. Funct. Anal. 4 (1969), 167-175. MR 0248506 (40:1758)
  • [23] -, On injective Banach spaces and the $ {L^\infty }(\mu )$ for finite measure $ \mu $, Acta Math. 124 (1970), 205-248. MR 0257721 (41:2370)
  • [24] -, Some remarks concerning sign-embeddings, Seminaire d'Analyse Fonct., Univ. Paris VII, 1981-82.
  • [25] -, Embeddings of $ {L^1}$ in $ {L^1}$, Conference in Modern Analysis and Probability, Contemporary Math., vol. 26, Amer. Math. Soc., Providence, R.I., 1982, pp. 335-349.
  • [26] H. H. Schaefer, Banach lattices and positive operators, Springer-Verlag, Berlin and New York, 1974. MR 0423039 (54:11023)
  • [27] P. Wojtaszczyk, On complemented subspaces and unconditional bases in $ {l_p} \oplus {l_q}$, Studia Math. 47 (1973), 197-206. MR 0338744 (49:3508)
  • [28] -, On projections and unconditional bases in direct sums of Banach spaces. II, Studia Math. 62 (1978), 193-201. MR 0500084 (58:17791)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 46B30

Retrieve articles in all journals with MSC: 46B30


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1987-0911095-9
Article copyright: © Copyright 1987 American Mathematical Society

American Mathematical Society