Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Transactions of the American Mathematical Society
Transactions of the American Mathematical Society
ISSN 1088-6850(online) ISSN 0002-9947(print)

 

The equivariant Conner-Floyd isomorphism


Author: Steven R. Costenoble
Journal: Trans. Amer. Math. Soc. 304 (1987), 801-818
MSC: Primary 57R85
MathSciNet review: 911096
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This paper proves two equivariant generalizations of the Conner-Floyd isomorphism relating unitary cobordism and $ K$-theory. It extends a previous result of Okonek for abelian groups to all compact Lie groups. We also show that the result for finite groups is true using either the geometric or homotopical versions of cobordism.


References [Enhancements On Off] (What's this?)

  • [1] J. F. Adams, Lectures on Lie groups, University of Chicago Press, Chicago, 1982.
  • [2] M. F. Atiyah, Bott periodicity and the index of elliptic operators, Quart. J. Math. Oxford Ser. (2) 19 (1968), 113-140. MR 0228000 (37:3584)
  • [3] M. F. Atiyah and G. B. Segal, Equivariant $ K$-theory and completion, J. Differential Geom. 3 (1969), 1-18. MR 0259946 (41:4575)
  • [4] T. Bröcker and E. C. Hook, Stable equivariant bordism, Math. Z. 129 (1972), 269-277. MR 0321119 (47:9652)
  • [5] P. E. Conner and E. E. Floyd, Differentiable periodic maps, Springer-Verlag, Berlin and New York, 1964. MR 0176478 (31:750)
  • [6] -, The relation of cobordism to $ K$-theories, Lecture Notes in Math., vol. 28, Springer-Verlag, Berlin and New York, 1966.
  • [7] S. R. Costenoble, Equivariant cobordism and $ K$-theory, Ph.D. Thesis, Univ. of Chicago, 1985.
  • [8] T. tom Dieck, Bordism of $ G$-manifolds and integrality theorems, Topology 9 (1970), 345-358. MR 0266241 (42:1148)
  • [9] H. Hauschild, Äquivariante Transversalität und äquivariante Bordismentheorien, Arch. Math. 26 (1975), 536-546. MR 0402787 (53:6601)
  • [10] M. Karoubi, $ K$-theory, Springer-Verlag, Berlin and New York, 1978. MR 0488029 (58:7605)
  • [11] L. G. Lewis, Jr., The uniqueness of bundle transfers, Math. Proc. Cambridge Philos. Soc. 93 (1983), 87-111. MR 684278 (85b:55022)
  • [12] L. G. Lewis, Jr., J. P. May and M. Steinberger, Equivariant stable homotopy theory, Lecture Notes in Math., vol. 1213, Springer-Verlag, Berlin and New York, 1986. MR 866482 (88e:55002)
  • [13] P. Löffler, Bordismengruppen unitärer Torusmannigfaltigkeiten, Manuscripta Math. 12 (1974), 307-327. MR 0348776 (50:1271)
  • [14] G. Nishida, The transfer homomorphism in equivariant generalized cohomology theories, J. Math. Kyoto Univ. 18-3 (1978), 435-451. MR 509493 (80a:55006)
  • [15] C. Okonek, Der Conner-Floyd-Isomorphismus für Abelsche Gruppen, Math. Z. 179 (1982), 201-212. MR 645496 (83d:55007)
  • [16] T. Petrie, Pseudoequivalences of $ G$-manifolds, Proc. Sympos. Pure Math., vol. 32, Amer. Math. Soc., Providence, R.I., 1978, pp. 169-210. MR 520505 (80e:57039)
  • [17] G. Segal, Equivariant $ K$-theory, Inst. Hautes Études Sci. Publ. Math. 34 (1968), 129-151. MR 0234452 (38:2769)
  • [18] S. Waner, Equivariant $ RO(G)$-graded bordism theories, Topology Appl. 17 (1984), 1-26. MR 730020 (85e:57042)
  • [19] A. G. Wassermann, Equivariant differential topology, Topology 8 (1969), 127-150. MR 0250324 (40:3563)
  • [20] K. Wirthmüller, Equivariant homology and duality, Manuscripta Math. 11 (1974), 373-390. MR 0343260 (49:8004)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 57R85

Retrieve articles in all journals with MSC: 57R85


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9947-1987-0911096-0
PII: S 0002-9947(1987)0911096-0
Article copyright: © Copyright 1987 American Mathematical Society