Interpolation of Besov spaces

Authors:
Ronald A. DeVore and Vasil A. Popov

Journal:
Trans. Amer. Math. Soc. **305** (1988), 397-414

MSC:
Primary 46E35; Secondary 41A15, 46M35

DOI:
https://doi.org/10.1090/S0002-9947-1988-0920166-3

MathSciNet review:
920166

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We investigate Besov spaces and their connection with dyadic spline approximation in , . Our main results are: the determination of the interpolation spaces between a pair of Besov spaces; an atomic decomposition for functions in a Besov space; the characterization of the class of functions which have certain prescribed degree of approximation by dyadic splines.

**[B]**C. de Boor,*The quasi-interpolant as a tool in elementary polynomial spline theory*, Approximation Theory (G. G. Lorentz, ed.), Academic Press, New York, 1973, pp. 269-276. MR**0336159 (49:935)****[B-F]**C. de Boor and G. F. Fix,*Spline approximation by quasi-interpolants*, J. Approx. Theory**8**(1973), 19-45. MR**0340893 (49:5643)****[Br]**Yu. Brudnyi,*Approximation of functions of*-*variables by quasi-polynomials*, Math. USSR Izv.**4**(1970), 568-586.**[B-B]**P. L. Butzer and H. Berens,*Semi-groups of operators and approximation*, Springer-Verlag, New York, 1967. MR**0230022 (37:5588)****[C]**Z. Ciesielski,*Constructive function theory and spline systems*, Studia Math.**52**(1973), 277-302. MR**0417630 (54:5680)****[D]**R. DeVore,*Degree of approximation*, Approximation Theory, II (G. G. Lorentz, C. K. Chui, L. L. Schumaker, eds.), Academic Press, New York, 1976, pp. 117-162. MR**0440865 (55:13733)****[D-P]**R. DeVore and V. Popov,*Interpolation and non-linear approximation*, Proc. Conf. on Interpolation and Allied Topics in Analysis, Lund, 1986 (to appear).**[D-P]**R. DeVore and V. A. Popov,*Free multivariate splines*, Constructive Approximation**3**(1987), 239-248. MR**889558 (88e:41029)****[D-S]**R. DeVore and K. Scherer,*A constructive theory for approximation by splines with an arbitrary sequence of knot sets*, Approximation Theory, Lecture Notes in Math., vol. 556, Springer-Verlag, New York, 1976. MR**0614156 (58:29637)****[D-Sh]**R. DeVore and R. Sharpley,*Maximal functions measuring smoothness*, Mem. Amer. Math. Soc, vol. 47, no. 293, 1984. MR**727820 (85g:46039)****[F-J]**M. Frazier and B. Jawerth,*Decomposition of Besov spaces*, preprint. MR**808825 (87h:46083)****[P]**J. Peetre,*New thoughts on Besov spaces*, Duke Univ. Math. Ser. I, Durham, N.C., 1976. MR**0461123 (57:1108)****[Pt]**P. Petrushev,*Direct and converse theorems for spline and rational approximation and Besov spaces*, Proc. Conf. on Interpolation and Applied Topics in Analysis, Lund, 1986 (to appear). MR**942281 (89d:41027)****[S-O]**E. A. Storozhenko and P. Oswald,*Jackson's theorem in the spaces*, , Siberian Math. J.**19**(1978), 630-639.**[P-P]**V. A. Popov and P. Petrushev,*Rational approximation of real valued functions*, Encyclopedia of Math, and Applications, vol. 28, Cambridge Univ. Press, Cambridge, 1987.

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
46E35,
41A15,
46M35

Retrieve articles in all journals with MSC: 46E35, 41A15, 46M35

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1988-0920166-3

Keywords:
Besov spaces,
real interpolation spaces,
dyadic splines,
degree of approximation

Article copyright:
© Copyright 1988
American Mathematical Society