There is no exactly -to- function from any continuum onto , or any dendrite, with only finitely many discontinuities

Author:
Jo W. Heath

Journal:
Trans. Amer. Math. Soc. **306** (1988), 293-305

MSC:
Primary 54C10; Secondary 54F15, 54F50

MathSciNet review:
927692

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Katsuura and Kellum recently proved [**8**] that any (exactly) -to function from onto must have infinitely many discontinuities, and they asked if the theorem remains true if the domain is any (compact metric) continuum. The result in this paper, that any (exactly) -to- function from a continuum onto any dendrite has finitely many discontinuities, answers their question in the affirmative.

**[1]**Karol Borsuk and R. Molski,*On a class of continuous mappings*, Fund. Math.**45**(1957), 84–98. MR**0102063****[2]**Paul Civin,*Two-to-one mappings of manifolds*, Duke Math. J.**10**(1943), 49–57. MR**0008697****[3]**Paul W. Gilbert,*𝑛-to-one mappings of linear graphs*, Duke Math. J.**9**(1942), 475–486. MR**0007106****[4]**O. G. Harrold Jr.,*The non-existence of a certain type of continuous transformation*, Duke Math. J.**5**(1939), 789–793. MR**0001358****[5]**O. G. Harrold Jr.,*Exactly (𝑘,1) transformations on connected linear graphs*, Amer. J. Math.**62**(1940), 823–834. MR**0002554****[6]**Jo Heath,*Every exactly 2-to-1 function on the reals has an infinite set of discontinuities*, Proc. Amer. Math. Soc.**98**(1986), no. 2, 369–373. MR**854049**, 10.1090/S0002-9939-1986-0854049-8**[7]**Jo W. Heath,*𝐾-to-1 functions on arcs for 𝐾 even*, Proc. Amer. Math. Soc.**101**(1987), no. 2, 387–391. MR**902560**, 10.1090/S0002-9939-1987-0902560-4**[8]**Hidefumi Katsuura and Kenneth R. Kellum,*𝑘-to-1 functions on an arc*, Proc. Amer. Math. Soc.**101**(1987), no. 4, 629–633. MR**911022**, 10.1090/S0002-9939-1987-0911022-X**[9]**K. Kuperberg, Example presented at the Spring Topology Conference, USL, Lafayette, La., March 1986.**[10]**Venable Martin and J. H. Roberts,*Two-to-one transformations on 2-manifolds*, Trans. Amer. Math. Soc.**49**(1941), 1–17. MR**0004129**, 10.1090/S0002-9947-1941-0004129-9**[11]**J. Mioduszewski,*On two-to-one continuous functions*, Rozprawy Mat.**24**(1961), 43. MR**0145490****[12]**Sam B. Nadler Jr. and L. E. Ward Jr.,*Concerning exactly (𝑛,1) images of continua*, Proc. Amer. Math. Soc.**87**(1983), no. 2, 351–354. MR**681847**, 10.1090/S0002-9939-1983-0681847-3**[13]**J. H. Roberts,*Two-to-one transformations*, Duke Math. J.**6**(1940), 256–262. MR**0001923**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
54C10,
54F15,
54F50

Retrieve articles in all journals with MSC: 54C10, 54F15, 54F50

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1988-0927692-1

Keywords:
-to- function,
-to- map

Article copyright:
© Copyright 1988
American Mathematical Society