Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

An approach to homotopy classification of links


Author: J. P. Levine
Journal: Trans. Amer. Math. Soc. 306 (1988), 361-387
MSC: Primary 57M25
DOI: https://doi.org/10.1090/S0002-9947-1988-0927695-7
MathSciNet review: 927695
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A reformulation and refinement of the $ \overline \mu $-invariants of Milnor are used to give a homotopy classification of $ 4$ component links and suggest a possible general homotopy classification. The main idea is to use the (reduced) group of a link and its "geometric" automorphisms to define the precise indeterminacy of these invariants.


References [Enhancements On Off] (What's this?)

  • [FR] R. Fenn and D. Rolfsen, Spheres may link homotopically in $ 4$-space, J. London Math. Soc. (2) 34 (1986), 177-184. MR 859159 (88b:57026)
  • [G] C. Griffen, New results on link equivalence relations, preprint, 1976.
  • [G1] -, Link concordance implies link homotopy, Math. Scand. 45 (1979), 243-254. MR 580602 (82a:57005)
  • [GO] D. Goldsmith, Concordance implies homotopy for classical links in $ {M^3}$, Comment. Math. Helv. 54 (1979), 347-355. MR 543335 (80h:57006)
  • [H] S. Humphries, On weakly distinguished bases and free generating sets of free groups, Quart. J. Math. 36 (1985), 215-220. MR 790480 (87f:20045)
  • [HS] F. Hosokawa and S. Suzuki, Linking $ 2$-spheres in the $ 4$-sphere, preprint.
  • [KO] K. H. Ko, Seifert matrices and boundary link cobordism, Ph.D. Thesis, Brandeis University, 1984.
  • [L] J. Levine, Surgery on links and the $ \overline \mu $-invariants, Topology 26 (1987), 45-61. MR 880507 (88d:57005)
  • [LS] R. Lyndon and P. Schupp, Combinatorial group theory, Springer-Verlag, New York, 1977. MR 0577064 (58:28182)
  • [M] J. Milnor, Link groups, Ann. of Math. (2) 59 (1954), 177-195. MR 0071020 (17:70e)
  • [M1] -, Isotopy of links, Algebra, geometry and topology (A symposium in honor of S. Lefschetz), Princeton Univ. Press, Princeton, N.J., 1957, pp. 280-306. MR 0092150 (19:1070c)
  • [MR] W. Massey and D. Rolfsen, Homotopy classification of higher dimensional links, Indiana Univ. Math. J. 34 (1985), 375-391. MR 783921 (86g:57016)
  • [MKS] W. Magnus, A. Karrass, and D. Solitar, Combinatorial group theory, Dover, New York, 1976. MR 0422434 (54:10423)
  • [P] A. Plans, Contribution to the homotopy of systems of knots, Rev. Mat. Hisp. Amer. 17 (1957), 224-237 (Spanish). MR 0098384 (20:4844)
  • [R] D. Rolfsen, Isotopy of links in codimension two, J. Indian Math. Soc. 36 (1972), 978-984. MR 0341497 (49:6248)
  • [S] J. P. Serre, Lie algebras and Lie groups, Benjamin, New York, 1965. MR 0218496 (36:1582)
  • [St] J. Stallings, Homology and central series groups, J. Algebra 2 (1965), 170-181. MR 0175956 (31:232)
  • [T] A. Tristram, Some cobordism invariants for links, Proc. Cambridge Philos. Soc. 66 (1969), 251-264. MR 0248854 (40:2104)
  • [FL] M. Freedman and X. S. Lin, On the $ (A,\,B)$-slice problem, preprint. MR 991101 (90b:57002)
  • [Li] X. S. Lin, On equivalence relations of links in $ 3$-manifolds, preprint.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 57M25

Retrieve articles in all journals with MSC: 57M25


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1988-0927695-7
Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society