Construction of cohomology of discrete groups

Authors:
Y. L. Tong and S. P. Wang

Journal:
Trans. Amer. Math. Soc. **306** (1988), 735-763

MSC:
Primary 32N15; Secondary 11F27, 11F55, 22E40

DOI:
https://doi.org/10.1090/S0002-9947-1988-0933315-8

MathSciNet review:
933315

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A correspondence between Hermitian modular forms and vector valued harmonic forms in locally symmetric spaces associated to is constructed and also shown in general to be nonzero. The construction utilizes Rallis-Schiffmann type theta functions and simplified arguments to circumvent differential geometric calculations used previously in related problems.

**[B.W.]**A. Borel and N. Wallach,*Continuous cohomology discrete subgroups, and representations of reductive groups*, Princeton Univ. Press, Princeton, N.J., 1980. MR**554917 (83c:22018)****[F.1]**M. Flensted-Jensen,*Discrete series for semi-simple symmetric spaces*, Ann. of Math. (2)**111**(1980), 253-311. MR**569073 (81h:22015)****[F.2]**-,*Harmonic analysis on semisimple symmetric spaces*, Lecture Notes in Math., vol. 1077. Springer-Verlag, 1984, pp. 166-209.**[G]**B. Gordon,*Intersections of higher weight cycles over quaternionic modular surfaces and modular forms of nebentypus*, Bull. Amer. Math. Soc.**14**(1986), 293-298. MR**828829 (87e:11068)****[Ho.1]**R. Howe,*series and invariant theory*, Proc. Sympos. Pure Math., vol. 33, Amer. Math. Soc., Providence, R.I., 1979, pp. 275-285. MR**546602 (81f:22034)****[Ho.2]**-,*Transcending classical invariant theory*(preprint). MR**985172 (90k:22016)****[**R. Howe and I. Piatetski-Shapiro,**H.-PS**.]*Some examples of automorphic forms on*, Duke Math. J.**50**(1983), 55-106. MR**700131 (84m:10019)****[H]**L. K. Hua,*Harmonic analysis of functions of several complex variables in the classical domains*, Transl. Math. Monographs, vol. 6, Amer. Math. Soc., Providence, R.I., 1963. MR**0171936 (30:2162)****[K.M.1]**S. Kudla and J. Millson,*Geodesic cycles and the Weil representation*. I, Compositio Math.**45**(1982), 207-271. MR**651982 (83m:10037)****[K.M.2]**-,*The theta correspondence and harmonic forms*. I, Math. Ann.**274**(1986), 353-378. MR**842618 (88b:11023)****[K.V.]**M. Kashiwara and M. Vergne,*On the Segal-Shale-Weil representations and pluriharmonic polynomials*, Invent. Math.**44**(1978), 1-47. MR**0463359 (57:3311)****[L.V.]**G. Lions and M. Vergne,*The Weil representation, Maslov index and theta series*, Birkhäuser, Boston, Mass., 1980. MR**573448 (81j:58075)****[Ma]**H. Maass,*Siegel's modular forms and Dirichlet's series*, Lecture Notes in Math., vol. 216, Springer-Verlag, New York, 1971. MR**0344198 (49:8938)****[M.M.]**Y. Matsushima and S. Murakami,*On vector bundle valued harmonic forms and automorphic forms on symmetric spaces*, Ann. of Math. (2)**78**(1963), 365-416. MR**0153028 (27:2997)****[R.S.1]**S. Rallis and G. Schiffmann,*Weil representation*. I:*Intertwining distributions and discrete spectrum*, Mem. Amer. Math. Soc.**231**(1982). MR**567800 (81j:22007)****[R.S.2]**-,*Automorphic forms constructed from the Weil representation: Holomorphic case*, Amer. J. Math.**100**(1978), 1049-1122. MR**517145 (80d:10038)****[T]**Y. L. Tong,*Weighted intersection numbers on Hilbert modular surfaces*, Compositio Math.**38**(1979), 299-310. MR**535073 (80f:10034)****[T.W.1]**Y. L. Tong and S. P. Wang,*Harmonic forms dual to geodesic cycles in quotients of*, Math. Ann.**258**(1982), 289-318. MR**649201 (84m:32046)****[T.W.2]**-,*Theta functions defined by geodesic cycles in quotients of*, Invent. Math.**71**(1983), 467-499. MR**695901 (85c:11046)****[T.W.3]**-,*Correspondence of Hermitian modular forms to cycles associated to*, J. Differential Geom.**18**(1983), 163-207. MR**697988 (85d:11047)****[T.W.4]**-,*Period integrals in noncompact quotients of*, Duke Math. J.**52**(1985), 649-688. MR**808097 (87c:32038)****[T.W.5]**-,*Some nonzero cohomology of discrete groups*(preprint).**[W.1]**S. P. Wang,*Correspondence of modular forms to cycles associated to*, J. Differential Geom.**22**(1985), 151-213. MR**834276 (88a:32040)****[W.2]**-,*Correspondence of modular forms to cycles associated to*(preprint).**[Z]**D. P. Želobenko,*Compact Lie groups and their representations*, Transl. Math. Monographs, vol. 40, Amer. Math. Soc., Providence, R.I., 1973. MR**0473098 (57:12776b)**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
32N15,
11F27,
11F55,
22E40

Retrieve articles in all journals with MSC: 32N15, 11F27, 11F55, 22E40

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1988-0933315-8

Article copyright:
© Copyright 1988
American Mathematical Society