Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Harmonically immersed surfaces of $ {\bf R}\sp n$


Authors: Gary R. Jensen and Marco Rigoli
Journal: Trans. Amer. Math. Soc. 307 (1988), 363-372
MSC: Primary 53A10; Secondary 53A07, 58E20
DOI: https://doi.org/10.1090/S0002-9947-1988-0936822-7
Correction: Trans. Amer. Math. Soc. 311 (1989), 425-428.
MathSciNet review: 936822
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Some generalizations of classical results in the theory of minimal surfaces $ f:M \to {{\mathbf{R}}^n}$ are shown to hold in the more general case of harmonically immersed surfaces.


References [Enhancements On Off] (What's this?)

  • [1] S. S. Chern, Minimal surfaces in Euclidean space of $ N$ dimensions, Symposium in Honour of Marston Morse, Princeton Univ. Press, Princeton, N.J., 1965, pp. 187-198. MR 0180926 (31:5156)
  • [2] -, On the minimal immersions of the two-sphere in a space of constant curvature, Problems in Analysis, Princeton, N. J., 1970, pp. 27-40. MR 0362151 (50:14593)
  • [3] J. Eells, Gauss maps of surfaces (Anniversary of Oberwolfach 1984), Perspectives in Mathematics, Birkhäuser, Basel, 1984, pp. 111-129. MR 779673 (86j:53090)
  • [4] J. Eells and L. Lemaire, Selected topics in harmonic maps, CBMS Regional Conf. Ser. in Math., no. 50, Amer. Math. Soc., Providence, R.I., 1983. MR 703510 (85g:58030)
  • [5] R. D. Gulliver, R. Osserman and M. L. Royden, A theory of branched immersions of surfaces, Amer. J. Math. 95 (1973), 750-812. MR 0362153 (50:14595)
  • [6] A. Huber, On subharmonic functions and differential geometry in the large, Comment. Math. Helv. 32 (1957), 13-72. MR 0094452 (20:970)
  • [7] D. Hoffman and R. Osserman, The geometry of the generalized Gauss map, Mem. Amer. Math. Soc., no. 236, 1980. MR 587748 (82b:53012)
  • [8] -, The area of the generalized Gaussian image and the stability of minimal surfaces in $ {S^n}$ and $ {R^n}$, Math. Ann. 260 (1982), 437-452. MR 670192 (84a:53006)
  • [9] T. Klotz Milnor, Are harmonically immersed surfaces at all like minimally immersed surfaces, Seminar on Minimal Submanifolds (S.T. Yau, ed.), Princeton Univ. Press, Princeton, N.J., 1983, pp. 99-110. MR 795230
  • [10] B. H. Lawson, Lectures on minimal submanifolds, vol. I, Publish or Perish, 1980. MR 576752 (82d:53035b)
  • [11] R. Osserman, A survey of minimal surfaces, Van Nostrand Math. Studies, no. 25, Van Nostrand, 1969. MR 0256278 (41:934)
  • [12] M. Rigoli, On immersed compact submanifolds of Euclidean space, Proc. Amer. Math. Soc. 102 (1988), 153-156. MR 915735 (89b:53095)
  • [13] E. Ruh and J. Vilms, The tension field of the Gauss map, Trans. Amer. Math. Soc. 149 (1970), 569-573. MR 0259768 (41:4400)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 53A10, 53A07, 58E20

Retrieve articles in all journals with MSC: 53A10, 53A07, 58E20


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1988-0936822-7
Keywords: Harmonic maps, Gauss maps, equidistribution, Weierstrass representation
Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society