Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Tangent cones to discriminant loci for families of hypersurfaces


Authors: Roy Smith and Robert Varley
Journal: Trans. Amer. Math. Soc. 307 (1988), 647-674
MSC: Primary 32G11; Secondary 14D15
DOI: https://doi.org/10.1090/S0002-9947-1988-0940221-1
MathSciNet review: 940221
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A deformation of a variety with (nonisolated) hypersurface singularities, such as a projective hypersurface or a theta divisor of an abelian variety, determines a rational map of the singular locus to projective space and the resulting projective geometry of the singular locus describes how the singularities propagate in the deformation. The basic principle is that the projective model of the singular locus is dual to the tangent cone to the discriminant of the deformation. A detailed study of the method, which emerged from interpreting Andreotti-Mayer's work on theta divisors in terms of Schlessinger's deformation theory of singularities, is given along with examples, applications, and multiplicity formulas.


References [Enhancements On Off] (What's this?)

  • [A-M] A. Andreotti and A. Mayer, On period relations for abelian integrals on algebraic curves, Ann. Scuola Norm. Sup. Pisa 21 (1967), 189-238. MR 0220740 (36:3792)
  • [A1] V. I. Arnold, Mathematical methods of classical mechanics, Graduate Texts in Math., vol. 60, Springer-Verlag, New York, 1978. MR 0690288 (57:14033b)
  • [A2] -, Singularities of ray systems, Proc. Internat. Congr. Math. (August 16-24, 1983, Warszawa, vol. 1, PWN, Warsaw, 1984, pp. 27-49.) MR 804675 (87h:58019)
  • [B] A. Beauville, Les singularités du diviseur $ \Theta $ de la jacobienne intermediaire de l'hypersurface cubique dans $ {\mathbb{P}^4}$, Lecture Notes in Math., vol. 947, Springer-Verlag, New York, 1982, pp. 190-208. MR 672617 (84c:14030)
  • [C-G] C. H. Clemens and P. Griffiths, The intermediate Jacobian of the cubic threefold, Ann. of Math. (2) 95 (1972), 281-356. MR 0302652 (46:1796)
  • [D-S] R. Donagi and R. Smith, The structure of the Prym map, Acta Math. 146 (1981), 25-102. MR 594627 (82k:14030b)
  • [D] A. Douady, Flatness and privilege, Enseign. Math. 14 (1968), 47-74. MR 0236420 (38:4716)
  • [Fr] R. Friedman, Global smoothings of varieties with normal crossings, Ann. of Math. (2) 118 (1983), 75-114. MR 707162 (85g:32029)
  • [Fu] W. Fulton, Intersection theory, Springer-Verlag, New York, 1984. MR 732620 (85k:14004)
  • [F-L] W. Fulton and R. Lazarsfeld, On the connectedness of degeneracy loci and special divisors, Acta Math. 146 (1981), 271-283. MR 611386 (82k:14016)
  • [Gra] H. Grauert, Über Modifikationen und Exzeptionelle analytische Mengen, Math. Ann. 146 (1962), 331-368. MR 0137127 (25:583)
  • [Gre] M. Green, Quadrics of rank four in the ideal of the canonical curve, Invent. Math. 75 (1984), 84-104. MR 728141 (85f:14028)
  • [G-H] P. Griffiths and J. Harris, Principles of algebraic geometry, Wiley, New York, 1978. MR 507725 (80b:14001)
  • [Ha1] R. Hartshorne, Ample subvarieties of algebraic varieties, Lecture Notes in Math., vol. 156, Springer-Verlag, New York, 1970. MR 0282977 (44:211)
  • [Ha2] -, Algebraic geometry, Springer-Verlag, New York, 1977. MR 0463157 (57:3116)
  • [Hi] H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero, Ann. of Math. (2) 79 (1964), 109-326. MR 0199184 (33:7333)
  • [H-R] H. Hironaka and H. Rossi, On the equivalence of imbeddings of exceptional complex spaces, Math. Ann. 156 (1964), 313-333. MR 0171784 (30:2011)
  • [I] B. Iverson, Critical points of an algebraic function, Invent. Math. 12 (1971), 210-224. MR 0342512 (49:7258)
  • [Ke1] G. Kempf, On the geometry of a theorem of Riemann, Ann. of Math. (2) 98 (1973), 178-185. MR 0349687 (50:2180)
  • [Ke2] -, Deformations of symmetric products, Riemann Surfaces and Related Topics (Proc. 1978 Stony Brook Conf.), Ann. Math. Stud. 97, Princeton Univ. Press, 1981, pp. 319-341. MR 624823 (82k:14023)
  • [Kl1] S. Kleiman, About the conormal scheme, Lecture Notes in Math., vol. 1092, Springer-Verlag, New York, 1984, pp. 161-197. MR 775882 (87g:14060)
  • [Kl2] -, Tangency and duality, Proc. 1984 Vancouver Conf. in Algebraic Geometry, Amer. Math. Soc., Providence, R. I., 1986, pp. 163-225. MR 846021 (87i:14046)
  • [L-T] Lê, D. T. and B. Teissier, Limites d'espaces tangents en géométrie analytique, preprint, 1986.
  • [L] E. Looijenga, Isolated singular points on complete intersections, London Math. Soc. Lecture Note Series 77, Cambridge Univ. Press, 1984. MR 747303 (86a:32021)
  • [M-M] A. Mattuck and A. Mayer, The Riemann-Roch theorem for algebraic curves, Ann. Scuola Norm. Sup. Pisa 17 (1963), 223-237. MR 0162798 (29:102)
  • [Mi] J. Milnor, Singular points of complex hypersurfaces, Ann. Math. Stud. 61, Princeton Univ. Press, 1968. MR 0239612 (39:969)
  • [Mu1] D. Mumford, Introduction to algebraic geometry, Lecture Notes, Harvard Univ., 1967.
  • [Mu2] -, Curves and their Jacobians, Univ. of Michigan Press, Ann Arbor, 1975. MR 0419430 (54:7451)
  • [Mu3] -, Algebraic geometry. I. Complex projective varieties, Springer-Verlag, New York, 1976. MR 0453732 (56:11992)
  • [Mu4] -, Some footnotes to the work of C. P. Ramanujan, C. P. Ramanujan--a tribute, Tata Inst. Fund. Res. Studies in Math 8, Springer, Berlin, 1978, pp. 247-262. MR 80m: 14026. MR 541025 (80m:14026)
  • [S] C. Sabbbah, Quelques remarques sur la géométrie des espaces conormaux, Systèmes Différentiels et Singularités, Astérisque 130 (1985), 161-192.
  • [Schl1] M. Schlessinger, Infinitesimal deformations of singularities, Thesis, Harvard Univ., 1964.
  • [Schl2] -, On rigid singularities, Complex Analysis, 1972, Rice Univ. Stud., vol. 59, No. 1, 1973, pp. 147-162. MR 0344519 (49:9258)
  • [Schu] H. W. Schuster, Deformationen analytischer Algebren, Invent. Math. 6 (1968), 262-274. MR 0237826 (38:6107)
  • [S-V1] R. Smith and R. Varley, On the geometry of $ {{\mathbf{N}}_0}$, Rend. Sem. Mat. Univ. Politech. Torino 42 (1984), 29 37. MR 812628 (87c:14052)
  • [S-V2] -, Components of the locus of singular theta divisors of genus $ 5$, Algebraic Geometry (Sitges 1983), Lecture Notes in Math., vol. 1124, Springer-Verlag, pp. 338-416.
  • [SV-3] -, The tangent cone to the discriminant, Proc. 1984 Vancouver Conf. in Algebraic Geometry, Amer. Math. Soc., Providence, R. I., 1986, pp. 443-460. MR 846034 (88h:14019)
  • [S-V4] -, Gauss maps and first order deformations of singular hypersurfaces, Bol. Soc. Mat. Méxicana (to appear).
  • [S-V5] -, Deformations of theta divisors and the rank four quadrics problem, in preparation.
  • [T1] B. Teissier, Deformations à type topologique constant. I, II, Sem. Douady-Verdier, 1971-72, Astérisque 16 (1974), 215-249. MR 0414931 (54:3023)
  • [T2] -, Cycles evanescents, sections planes et conditions de Whitney, Singularités à Cargèse, 1972, Asterisque 7-8 (1973), 285 362. MR 0374482 (51:10682)
  • [T3] -, The hunting of invariants in the geometry of discriminants, Real and Complex Singularities (Oslo 1976) (P. Holm, ed.), Stijhoff and Noordhoff, 1977, pp. 565-678. MR 0568901 (58:27964)
  • [T4] -, Sur la classification des singularités des espaces analytiques complexes, Proc. Internat. Congr. Math. (August 16-24, 1983, Warszawa), vol. 1, PWN, Warsaw, 1984, pp. 763-781. MR 804732 (87f:32032)
  • [Wei] A. Weinstein, Lectures on symplectic manifolds, CBMS Regional Conf. Ser. in Math., no. 29, Amer. Math. Soc., Providence, R. I., 1977. MR 0464312 (57:4244)
  • [Wel] G. Welters, Polarized abelian varieties and the heat equations, Compositio Math. 49 (1983), 173-194. MR 704390 (85f:14045)
  • [Wh] H. Whitney, Complex analytic varieties, Addison-Wesley, Reading, Mass., 1972. MR 0387634 (52:8473)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 32G11, 14D15

Retrieve articles in all journals with MSC: 32G11, 14D15


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1988-0940221-1
Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society