Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

Explicit formula for weighted scalar nonlinear hyperbolic conservation laws


Authors: Philippe LeFloch and Jean-Claude Nédélec
Journal: Trans. Amer. Math. Soc. 308 (1988), 667-683
MSC: Primary 35L65
DOI: https://doi.org/10.1090/S0002-9947-1988-0951622-X
MathSciNet review: 951622
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove a uniqueness and existence theorem for the entropy weak solution of nonlinear hyperbolic conservation laws of the form

$\displaystyle \frac{\partial } {{\partial t}}(ru) + \frac{\partial } {{\partial x}}(rf(u)) = 0,$

with initial data and boundary condition. The scalar function $ u = u(x,\,t)$, $ x > 0$, $ t > 0$, is the unknown, the function $ f = f(u)$ is assumed to be strictly convex with inf $ f( \cdot ) = 0$ and the weight function $ r = r(x)$, $ x > 0$, to be positive (for example, $ r(x) = {x^\alpha }$, with an arbitrary real $ \alpha $).

We give an explicit formula, which generalizes a result of P. D. Lax. In particular, a free boundary problem for the flux $ r( \cdot )f(u( \cdot , \cdot ))$ at the boundary is solved by introducing a variational inequality. The uniqueness result is obtained by extending a semigroup property due to B. L. Keyfitz.


References [Enhancements On Off] (What's this?)

  • [1] C. Bardos, A. Y. le Roux, and J.-C. Nédélec, First order quasilinear equations with boundary conditions, Comm. Partial Differential Equations 4 (1979), no. 9, 1017–1034. MR 542510, https://doi.org/10.1080/03605307908820117
  • [2] S. N. Kruskov, First order quasilinear systems in several independant variables, Math. USSR Sb. 10 (1970), 217-243.
  • [3] P. D. Lax, Hyperbolic systems of conservation laws. II, Comm. Pure Appl. Math. 10 (1957), 537–566. MR 0093653, https://doi.org/10.1002/cpa.3160100406
  • [4] Peter D. Lax, Hyperbolic systems of conservation laws and the mathematical theory of shock waves, Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1973. Conference Board of the Mathematical Sciences Regional Conference Series in Applied Mathematics, No. 11. MR 0350216
  • [5] O. A. Oleĭnik, Discontinuous solutions of non-linear differential equations, Amer. Math. Soc. Transl. (2) 26 (1963), 95–172. MR 0151737
  • [6] Barbara Keyfitz Quinn, Solutions with shocks: An example of an 𝐿₁-contractive semigroup, Comm. Pure Appl. Math. 24 (1971), 125–132. MR 0271545, https://doi.org/10.1002/cpa.3160240203
  • [7] Maria Elena Schonbek, Existence of solutions to singular conservation laws, SIAM J. Math. Anal. 15 (1984), no. 6, 1125–1139. MR 762969, https://doi.org/10.1137/0515088
  • [8] J. A. Smoller, Reaction-diffusion equations and shock waves, vol. 258, Springer-Verlag, 1983.
  • [9] G. B. Whitham, Linear and nonlinear waves, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1974. Pure and Applied Mathematics. MR 0483954
  • [10] Ph. Le Floch and J. C. Nedelec, Explicit formula for weighted scalar conservation laws, Centre Math. Appl. Ecole Polytechnique, preprint, January 1985.
  • [11] Ph. Le Floch, Contributions á l'étude théorique et á l'approximation numérique des systémes hyperboliques nonlinéaires, Thése, École Polytéchnique, France.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 35L65

Retrieve articles in all journals with MSC: 35L65


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1988-0951622-X
Article copyright: © Copyright 1988 American Mathematical Society