On zeros of a system of polynomials and application to sojourn time distributions of birth-and-death processes

Author:
Ken-iti Sato

Journal:
Trans. Amer. Math. Soc. **309** (1988), 375-390

MSC:
Primary 60J80; Secondary 26C10, 60E07

DOI:
https://doi.org/10.1090/S0002-9947-1988-0957077-3

MathSciNet review:
957077

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Zeros of the following system of polynomials are considered:

**[1]**C. Goldie,*A class of infinitely divisible random variables*, Proc. Cambridge Philos. Soc.**63**(1967), 1141-1143. MR**0215332 (35:6173)****[2]**I. A. Ibragimov,*On the composition of unimodal distributions*, Theor. Probab. Appl.**2**(1957), 117-119. MR**0087249 (19:326f)****[3]**S. Karlin and J. L. McGregor,*The differential equations of birth-and-death processes and the Stieltjes moment problem*, Trans. Amer. Math. Soc.**85**(1957), 489-546. MR**0091566 (19:989d)****[4]**J. Keilson,*Log-concavity and log-convexity in passage time densities of diffusion and birth-death processes*, J. Appl. Probab.**8**(1971), 391-398. MR**0290461 (44:7642)****[5]**-,*On the unimodality of passage time densities in birth-death processes*, Statist. Neerlandica**35**(1981), 49-55. MR**612946 (82f:60185)****[6]**J. T. Kent,*The appearance of a multivariate exponential distribution in sojourn times for birth-death and diffusion processes*, Probability, Statistics and Analysis, Eds., J. F. C. Kingman et al., London Math. Soc. Lecture Notes Ser., No. 79, 1983, pp. 161-179. MR**696026 (85d:60147)****[7]**W. Ledermann and G. E. H. Reuter,*Spectral theory for the differential equations of simple birth and death processes*, Philos. Trans. Roy. Soc. London Ser. A**246**(1953-1954), 321-369. MR**0060103 (15:625g)****[8]**U. Rösler,*Unimodality of passage times for one-dimensional strong Markov processes*, Ann. Probab.**8**(1980), 853-859. MR**577322 (82g:60103)****[9]**K. Sato,*Unimodality and bounds of modes for distributions of generalized sojourn times*, Stochastic Methods in Biology, Eds., M. Kimura et al., Lecture Notes in Biomath., No. 70, Springer, 1987, pp. 210-221. MR**893648 (88i:60124)****[10]**-,*Modes and moments of unimodal distributions*, Ann. Statist. Math.**39**(1987), Part A, 407-415. MR**913797 (89b:60039)****[11]**-,*Some classes generated by exponential distributions*, Probability Theory and Mathematical Statistics, Eds., S. Watanabe et al., Lecture Notes in Math., vol. 1299, Springer, 1988, pp. 454-463. MR**936020 (89g:60052)****[12]**K. Sato and M. Yamazato,*On distribution functions of class*, Z. Wahrsch. Verw. Gebiete**43**(1978), 273-308. MR**0494405 (58:13270)****[13]**F. W. Steutel,*Note on the infinite divisibililty of exponential mixtures*. Ann. Math. Statist.**38**(1967), 1303-1305. MR**0215339 (35:6180)****[14]**-,*Preservation of infinite divisibility under mixing and related topics*, Math. Centre Tracts 33, Amsterdam, 1970. MR**0278355 (43:4085)****[15]**Wang Zikun,*Sojourn times and first passage times for birth and death processes*, Sci. Sinica**23**(1980), 269-279. MR**569168 (81e:60088)****[16]**M. Yamazato,*Characterization of the class of upward first passage time distributions of birth and death processes and related results*, J. Math. Soc. Japan (to appear). MR**945348 (89g:60248)**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
60J80,
26C10,
60E07

Retrieve articles in all journals with MSC: 60J80, 26C10, 60E07

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1988-0957077-3

Keywords:
Zeros of polynomials,
sojourn time distribution,
birth-and-death process,
unimodal,
infinitely divisible

Article copyright:
© Copyright 1988
American Mathematical Society