Homology of smooth splines: generic triangulations and a conjecture of Strang

Author:
Louis J. Billera

Journal:
Trans. Amer. Math. Soc. **310** (1988), 325-340

MSC:
Primary 41A15; Secondary 65D07

MathSciNet review:
965757

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: For a triangulated -dimensional region in , let denote the vector space of all functions on that, restricted to any simplex in , are given by polynomials of degree at most . We consider the problem of computing the dimension of such spaces. We develop a homological approach to this problem and apply it specifically to the case of triangulated manifolds in the plane, getting lower bounds on the dimension of for all . For , we prove a conjecture of Strang concerning the generic dimension of the space of splines over a triangulated manifold in . Finally, we consider the space of continuous piecewise linear functions over nonsimplicial decompositions of a plane region.

**[1]**P. Alfeld,*On the dimension of multivariate piecewise polynomials*, Numerical analysis (Dundee, 1985) Pitman Res. Notes Math. Ser., vol. 140, Longman Sci. Tech., Harlow, 1986, pp. 1–23. MR**873098****[2]**Peter Alfeld,*A case study of multivariate piecewise polynomials*, Geometric modeling, SIAM, Philadelphia, PA, 1987, pp. 149–159. MR**936451****[3]**Peter Alfeld, Bruce Piper, and L. L. Schumaker,*An explicit basis for 𝐶¹ quartic bivariate splines*, SIAM J. Numer. Anal.**24**(1987), no. 4, 891–911. MR**899711**, 10.1137/0724058**[4]**Peter Alfeld, Bruce Piper, and L. L. Schumaker,*Minimally supported bases for spaces of bivariate piecewise polynomials of smoothness 𝑟 and degree 𝑑≥4𝑟+1*, Comput. Aided Geom. Design**4**(1987), no. 1-2, 105–123. Special issue on topics in computer aided geometric design (Wolfenbüttel, 1986). MR**898027**, 10.1016/0167-8396(87)90028-8**[5]**P. Alfeld, B. Piper, and L. L. Schumaker,*Spaces of bivariate splines on triangulations with holes*, Proceedings of China-U.S. Joint Conference on Approximation Theory (Hangzhou, 1985), 1987, pp. 1–10. MR**939177****[6]**Peter Alfeld and L. L. Schumaker,*The dimension of bivariate spline spaces of smoothness 𝑟 for degree 𝑑≥4𝑟+1*, Constr. Approx.**3**(1987), no. 2, 189–197. MR**889554**, 10.1007/BF01890563**[7]**Richard H. Bartels,*Splines in interactive computer graphics*, Numerical analysis (Dundee, 1983) Lecture Notes in Math., vol. 1066, Springer, Berlin, 1984, pp. 1–29. MR**760454**, 10.1007/BFb0099515**[8]**Louis J. Billera,*The algebra of continuous piecewise polynomials*, Adv. Math.**76**(1989), no. 2, 170–183. MR**1013666**, 10.1016/0001-8708(89)90047-9**[9]**Charles K. Chui and Ren Hong Wang,*On smooth multivariate spline functions*, Math. Comp.**41**(1983), no. 163, 131–142. MR**701629**, 10.1090/S0025-5718-1983-0701629-1**[10]**Charles K. Chui and Ren Hong Wang,*Multivariate spline spaces*, J. Math. Anal. Appl.**94**(1983), no. 1, 197–221. MR**701458**, 10.1016/0022-247X(83)90014-8**[11]**Ph. Ciarlet,*Lectures on the finite element method*, Tata Institute of Fundamental Research, Bombay, 1975. Notes by S. Kesavan, Akhil Ranjan and M. Vanninathan. MR**0431746****[12]**R. Courant,*Variational methods for the solution of problems of equilibrium and vibrations*, Bull. Amer. Math. Soc.**49**(1943), 1–23. MR**0007838**, 10.1090/S0002-9904-1943-07818-4**[13]**Henry Crapo and Juliette Ryan,*Réalisations spatiales des scènes linéaires*, Structural Topology**13**(1986), 33–68. Dual French-English text. MR**880673****[14]**Wolfgang Dahmen and Charles A. Micchelli,*Recent progress in multivariate splines*, Approximation theory, IV (College Station, Tex., 1983) Academic Press, New York, 1983, pp. 27–121. MR**754343****[15]**R. Haas,*Dimension and bases for certain classes of splines*:*a combinatorial and homological approach*, Ph.D. thesis, Cornell Univ., August 1987.**[16]**James R. Munkres,*Elements of algebraic topology*, Addison-Wesley Publishing Company, Menlo Park, CA, 1984. MR**755006****[17]**John Morgan and Ridgway Scott,*A nodal basis for 𝐶¹ piecewise polynomials of degree 𝑛≥5*, Math. Comput.**29**(1975), 736–740. MR**0375740**, 10.1090/S0025-5718-1975-0375740-7**[18]**-,*The dimension of the space of**piecewise polynomials*, unpublished manuscript, 1975.**[19]**Larry L. Schumaker,*On the dimension of spaces of piecewise polynomials in two variables*, Multivariate approximation theory (Proc. Conf., Math. Res. Inst., Oberwolfach, 1979) Internat. Ser. Numer. Math., vol. 51, Birkhäuser, Basel-Boston, Mass., 1979, pp. 396–412. MR**560683****[20]**Larry L. Schumaker,*Bounds on the dimension of spaces of multivariate piecewise polynomials*, Rocky Mountain J. Math.**14**(1984), no. 1, 251–264. Surfaces (Stanford, Calif., 1982). MR**736177**, 10.1216/RMJ-1984-14-1-251**[21]**Edwin H. Spanier,*Algebraic topology*, Springer-Verlag, New York-Berlin, 1981. Corrected reprint. MR**666554****[22]**Peter F. Stiller,*Certain reflexive sheaves on 𝑃ⁿ_{𝐶} and a problem in approximation theory*, Trans. Amer. Math. Soc.**279**(1983), no. 1, 125–142. MR**704606**, 10.1090/S0002-9947-1983-0704606-6**[23]**Gilbert Strang,*Piecewise polynomials and the finite element method*, Bull. Amer. Math. Soc.**79**(1973), 1128–1137. MR**0327060**, 10.1090/S0002-9904-1973-13351-8**[24]**Gilbert Strang,*The dimension of piecewise polynomial spaces, and one-sided approximation*, Conference on the Numerical Solution of Differential Equations (Univ. Dundee, Dundee, 1973) Springer, Berlin, 1974, pp. 144–152. Lecture Notes in Math., Vol. 363. MR**0430621****[25]**Ren Hong Wang,*Structure of multivariate splines, and interpolation*, Acta Math. Sinica**18**(1975), no. 2, 91–106 (Chinese). MR**0454458****[26]**Neil L. White and Walter Whiteley,*The algebraic geometry of stresses in frameworks*, SIAM J. Algebraic Discrete Methods**4**(1983), no. 4, 481–511. MR**721619**, 10.1137/0604049**[27]**Walter Whiteley,*A matroid on hypergraphs, with applications in scene analysis and geometry*, Discrete Comput. Geom.**4**(1989), no. 1, 75–95. MR**964145**, 10.1007/BF02187716**[28]**-,*A matrix for splines*, J. Approx. Theory (to appear).**[29]**-,*The analogy between multivariate splines and hinged panel structures*, preprint, Champlain Regional College, June 1986.**[30]**Oscar Zariski and Pierre Samuel,*Commutative algebra, Volume I*, The University Series in Higher Mathematics, D. Van Nostrand Company, Inc., Princeton, New Jersey, 1958. With the cooperation of I. S. Cohen. MR**0090581**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
41A15,
65D07

Retrieve articles in all journals with MSC: 41A15, 65D07

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1988-0965757-9

Article copyright:
© Copyright 1988
American Mathematical Society