Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Homology of smooth splines: generic triangulations and a conjecture of Strang


Author: Louis J. Billera
Journal: Trans. Amer. Math. Soc. 310 (1988), 325-340
MSC: Primary 41A15; Secondary 65D07
DOI: https://doi.org/10.1090/S0002-9947-1988-0965757-9
MathSciNet review: 965757
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: For $ \Delta $ a triangulated $ d$-dimensional region in $ {{\mathbf{R}}^d}$, let $ S_m^r(\Delta )$ denote the vector space of all $ {C^r}$ functions $ F$ on $ \Delta $ that, restricted to any simplex in $ \Delta $, are given by polynomials of degree at most $ m$. We consider the problem of computing the dimension of such spaces. We develop a homological approach to this problem and apply it specifically to the case of triangulated manifolds $ \Delta $ in the plane, getting lower bounds on the dimension of $ S{}_m^r(\Delta )$ for all $ r$. For $ r = 1$, we prove a conjecture of Strang concerning the generic dimension of the space of $ {C^1}$ splines over a triangulated manifold in $ {{\mathbf{R}}^2}$. Finally, we consider the space of continuous piecewise linear functions over nonsimplicial decompositions of a plane region.


References [Enhancements On Off] (What's this?)

  • [1] P. Alfeld, On the dimension of multivariate piecewise polynomial functions, Proc. Biennial Dundee Conf. on Numerical Analysis, Pitman, London, 1985. MR 873098 (88d:41014)
  • [2] -, A case study of multivariate piecewise polynomials, Geometric Modeling: Algorithms and New Trends (G. E. Farin, ed.), SIAM, Philadelphia, Pa., 1987. MR 936451
  • [3] P. Alfeld, B. Piper and L. L. Schumaker, An explicit basis for $ {C^1}$ quartic bivariate splines, SIAM J. Numer. Anal. 24 (1987), 891-911. MR 899711 (88i:41014)
  • [4] -, Minimally supported bases for spaces of bivariate piecewise polynomials of smoothness $ r$ and degree $ d \geqslant 4r + 1$, Comput. Aided Geom. Des. 4 (1987), 105-123. MR 898027 (88d:65019)
  • [5] -, Spaces of bivariate splines on triangulations with holes, J. Approx. Theory Appl. (to appear). MR 939177 (89h:41018)
  • [6] P. Alfeld and L. L. Schumaker, The dimension of bivariate spline spaces of smoothness $ r$ for degree $ d \geqslant 4r + 1$, Const. Approx. 3 (1987), 189-197. MR 889554 (88e:41025)
  • [7] R. H. Bartels, Splines in interactive computer graphics, Numerical Analysis (D. F. Griffiths, ed.), Lecture Notes in Math., vol. 1066, Springer-Verlag, New York, 1984, pp. 1-29. MR 760454 (86b:65011)
  • [8] L. J. Billera, The algebra of continuous piecewise polynomials over a simplicial complex, Adv. in Math. (to appear). MR 1013666 (90g:13021)
  • [9] C. K. Chui and R. H. Wang, On smooth multivariate spline functions, Math. Comp. 41 (1983), 131-142. MR 701629 (84f:41011)
  • [10] -, Multivariate spline spaces, J. Math. Anal. Appl. 94 (1983), 197-221. MR 701458 (84f:41010)
  • [11] P. Ciarlet, Lectures on the finite element method, Tata Institute of Fundamental Research, Bombay, 1975. MR 0431746 (55:4741)
  • [12] R. Courant, Variational methods for the solution of problems of equilibrium and vibration, Bull. Amer. Math. Soc. 49 (1943), 1-23. MR 0007838 (4:200e)
  • [13] H. Crapo and J. Ryan, Spatial realizations of linear scenes, Structural Topology 13 (1986), 33-68. MR 880673 (88d:51017)
  • [14] W. Dahmen and C. A. Micchelli, Recent progress in multivariate splines, Approximation Theory IV (C. K. Chui, L. L. Schumaker and J. D. Ward, eds.), Academic Press, New York, 1983, pp. 27-122. MR 754343 (85h:41013)
  • [15] R. Haas, Dimension and bases for certain classes of splines: a combinatorial and homological approach, Ph.D. thesis, Cornell Univ., August 1987.
  • [16] J. R. Munkres, Elements of algebraic topology, Addison-Wesley, Menlo Park, Calif., 1984. MR 755006 (85m:55001)
  • [17] J. Morgan and R. Scott, A nodal basis for $ {C^1}$ piecewise polynomials of degree $ n \geqslant 5$, Math. Comp. 29 (1975), 736-740. MR 0375740 (51:11930)
  • [18] -, The dimension of the space of $ {C^1}$ piecewise polynomials, unpublished manuscript, 1975.
  • [19] L. L. Schumaker, On the dimension of spaces of piecewise polynomials in two variables, Multivariate Approximation Theory (W. Schemp and K. Zeller, eds.), Birkhäuser, Basel, 1979, pp. 396-412. MR 560683 (81d:41011)
  • [20] -, Bounds on the dimension of spaces of multivariate piecewise polynomials, Rocky Mountain J. Math. 14 (1984), 251-264. MR 736177 (85h:41091)
  • [21] E. Spanier, Algebraic topology, Springer-Verlag, New York, 1982. MR 666554 (83i:55001)
  • [22] P. F. Stiller, Certain reflexive sheaves on $ P_C^n$ and a problem in approximation theory, Trans. Amer. Math. Soc. 279 (1983), 125-142. MR 704606 (84j:14025)
  • [23] G. Strang, Piecewise polynomials and the finite element method, Bull. Amer. Math. Soc. 79 (1973), 1128-1137. MR 0327060 (48:5402)
  • [24] -, The dimension of piecewise polynomial spaces and one-sided approximation, Proc. Conf. Numerical Solution of Differential Equations (Dundee 1973), Lecture Notes in Math., vol. 365, Springer-Verlag, New York, 1974, pp. 144-152. MR 0430621 (55:3626)
  • [25] R. H. Wang, The structural characterization and interpolation for multivariate splines, Acta. Math. Sinica (Shu Hsueh Hsueh Pao) 18 (1975), 91-106; English transl., 18 (1975), 10-39. MR 0454458 (56:12709)
  • [26] N. White and W. Whiteley, The algebraic geometry of stresses in frameworks, SIAM J. Algebraic Discrete Methods 4 (1983), 481-511. MR 721619 (85f:52024)
  • [27] W. Whiteley, A matroid on hypergraphs, with applications in scene analysis and geometry, preprint, Champlain Regional College, March 1986. MR 964145 (89k:05027)
  • [28] -, A matrix for splines, J. Approx. Theory (to appear).
  • [29] -, The analogy between multivariate splines and hinged panel structures, preprint, Champlain Regional College, June 1986.
  • [30] O. Zariski and P. Samuel, Commutative algebra, Vol. I, Van Nostrand, Princeton, N.J.; Springer-Verlag, New York, 1958. MR 0090581 (19:833e)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 41A15, 65D07

Retrieve articles in all journals with MSC: 41A15, 65D07


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1988-0965757-9
Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society