Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

Multilinear convolutions defined by measures on spheres


Author: Daniel M. Oberlin
Journal: Trans. Amer. Math. Soc. 310 (1988), 821-835
MSC: Primary 42A85; Secondary 42B15
MathSciNet review: 943305
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \sigma $ be Lebesgue measure on $ {\Sigma _{n - 1}}$ and write $ \sigma = ({\sigma _1}, \ldots ,{\sigma _n})$ for an element of $ {\Sigma _{n - 1}}$. For functions $ {f_1}, \ldots ,{f_n}$ on $ {\mathbf{R}}$, define

$\displaystyle T({f_1}, \ldots ,{f_n})(x) = \int_{{\Sigma _{n - 1}}} {{f_1}(x - {\sigma _1}) \cdots {f_n}(x - {\sigma _n})\,d\sigma ,\qquad x \in {\mathbf{R}}.} $

This paper partially answers the question: for which values of $ p$ and $ q$ is there an inequality

$\displaystyle \vert\vert T({f_1}, \ldots ,{f_n})\vert{\vert _q} \leqslant C\vert\vert{f_1}\vert{\vert _p} \cdots \vert\vert{f_n}\vert{\vert _p}?$


References [Enhancements On Off] (What's this?)

  • [1] J. Bergh and J. Löfström, Interpolation spaces, Springer-Verlag, Berlin, 1976.
  • [2] R. R. Coifman and Y. Meyer, Fourier analysis of multilinear convolutions, Calderón’s theorem, and analysis of Lipschitz curves, Euclidean harmonic analysis (Proc. Sem., Univ. Maryland, College Park, Md., 1979) Lecture Notes in Math., vol. 779, Springer, Berlin, 1980, pp. 104–122. MR 576041
  • [3] Margaret A. M. Murray, Multilinear convolutions and transference, Michigan Math. J. 31 (1984), no. 3, 321–330. MR 767611, 10.1307/mmj/1029003076
  • [4] Daniel M. Oberlin, A multilinear Young’s inequality, Canad. Math. Bull. 31 (1988), no. 3, 380–384. MR 956371, 10.4153/CMB-1988-054-0
  • [5] Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 42A85, 42B15

Retrieve articles in all journals with MSC: 42A85, 42B15


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1988-0943305-7
Article copyright: © Copyright 1988 American Mathematical Society