Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Ordinal rankings on measures annihilating thin sets


Authors: Alexander S. Kechris and Russell Lyons
Journal: Trans. Amer. Math. Soc. 310 (1988), 747-758
MSC: Primary 43A46; Secondary 03E15, 43A05, 54H05
DOI: https://doi.org/10.1090/S0002-9947-1988-0951888-6
MathSciNet review: 951888
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We assign a countable ordinal number to each probability measure which annihilates all $ H$-sets. The descriptive-set theoretic structure of this assignment allows us to show that this class of measures is coanalytic non-Borel. In addition, it allows us to quantify the failure of Rajchman's conjecture. Similar results are obtained for measures annihilating Dirichlet sets.


References [Enhancements On Off] (What's this?)

  • [BA] A. Beurling and L. Ahlfors, The boundary correspondence under quasiconformal mappings, Acta Math. 96 (1956), 125-142. MR 0086869 (19:258c)
  • [GM] C. C. Graham and O. C. McGehee, Essays in commutative harmonic analysis, Springer-Verlag, New York, 1979. MR 550606 (81d:43001)
  • [HMP] B. Host, J.-F. Méla and F. Parreau, Analyse harmonique des mesures, Astérisque 135-136 (1986).
  • [K] Y. Katznelson, An introduction to harmonic analysis, 2nd corrected ed., Dover, New York, 1976. MR 0422992 (54:10976)
  • [KL] A. S. Kechris and A. Louveau, Descriptive set theory and the structure of sets of uniqueness, London Math. Soc. Lecture Notes 128, Cambridge Univ. Press, Cambridge, 1987. MR 953784 (90a:42008)
  • [LP] L.-Å. Lindahl and F. Poulsen (eds.), Thin sets in harmonic analysis, Dekker, New York, 1971. MR 0393993 (52:14800)
  • [L1] R. Lyons, A characterization of measures whose Fourier-Stieltjes transforms vanish at infinity, Ph.D. Thesis, Univ. of Michigan, 1983. MR 722859 (85m:42008)
  • [L2] -, The size of some classes of thin sets, Studia Math. 86 (1987), 59-78. MR 887312 (88j:42014)
  • [L3] -, Mixing and asymptotic distribution modulo $ 1$, Ergodic Theory Dynamical Systems (to appear).
  • [L4] -, The local structure of some measure-algebra homomorphisms, preprint.
  • [L5] -, Singular measures with spectral gaps, Proc. Amer. Math. Soc. 104 (1988), 86-88. MR 958048 (90b:43008)
  • [R1] A. Rajchman, Sur l'unicité du développment trigonométrique, Fund. Math. (Varsovie) 3 (1922), 287-302. Rectification et addition à ma note "Sur l'unicité...", Fund. Math. 4 (1923), 366-367.
  • [R2] -, Sur la multiplication des séries trigonométriques et sur une classe remarquable d'ensembles fermés, Math. Ann. 95 (1925), 389-408.
  • [Z] A. Zygmund, Trigonometric series, 2nd ed. reprinted, Volumes I, II, Cambridge Univ. Press, Cambridge, 1979.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 43A46, 03E15, 43A05, 54H05

Retrieve articles in all journals with MSC: 43A46, 03E15, 43A05, 54H05


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1988-0951888-6
Keywords: Rajchman measures, thin sets, sets of uniqueness, rank
Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society