Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Codimension two complete noncompact submanifolds with nonnegative curvature


Author: Maria Helena Noronha
Journal: Trans. Amer. Math. Soc. 311 (1989), 739-748
MSC: Primary 53C40
DOI: https://doi.org/10.1090/S0002-9947-1989-0978374-2
MathSciNet review: 978374
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We study the topology of complete noncompact manifolds with non-negative sectional curvatures isometrically immersed in Euclidean spaces with codimension two. We investigate some conditions which imply that such a manifold is a topological product of a soul by a Euclidean space and this gives a complete topological description of this manifold.


References [Enhancements On Off] (What's this?)

  • [1] S. B. Alexander, Reducibility of euclidean immersions of low codimension, J. Differential Geometry 3 (1969), 69-82. MR 0250228 (40:3467)
  • [2] Y. Y. Baldin and F. Mercuri, Isometric immersions in codimension two with non-negative curvature, Math. Z. 173 (1980), 111-117. MR 583380 (83c:53061)
  • [3] -, Codimension two nonorientable submanifolds with nonnegative curvature, Proc. Amer. Math. Soc. 103 (1988), 918-920. MR 947682 (89h:53112)
  • [4] Y. Y. Baldin and M. H. Noronha, Some complete manifolds with non-negative curvature operator, Math. Z. 195 (1987), 383-390. MR 895308 (88e:53053)
  • [5] R. L. Bishop, The holonomy algebra of immersed manifolds of codimension two, J. Differential Geometry 2 (1968), 347-353. MR 0243460 (39:4782)
  • [6] J. Cheeger and D. Gromoll, On the structure of complete open manifolds of non-negative curvature, Ann. of Math. (2) 96 (1972), 413-443. MR 0309010 (46:8121)
  • [7] P. Hartman, On the isometric immersions in euclidean space of manifolds with non-negative sectional curvatures. II, Trans. Amer. Math. Soc. 147 (1970), 529-540. MR 0262981 (41:7586)
  • [8] J. D. Moore, Isometric immersions of Riemannian products, J. Differential Geometry 5 (1971), 159-168. MR 0307128 (46:6249)
  • [9] R. Sacksteder, On hypersurfaces with non-negative sectional curvatures, Amer. J. Math. 82 (1960), 609-630. MR 0116292 (22:7087)
  • [10] A. Weinstein, Positively curved $ n$-manifolds in $ {{\mathbf{R}}^{n + 2}}$, J. Differential Geometry 4 (1970), 1-4. MR 0264562 (41:9154)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 53C40

Retrieve articles in all journals with MSC: 53C40


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1989-0978374-2
Keywords: Compact soul, reducibility along the soul, curvature operator
Article copyright: © Copyright 1989 American Mathematical Society

American Mathematical Society